Nuprl Lemma : select_cons_tl_sq2
∀[i:ℕ]. ∀[x,l:Top].  ([x / l][i + 1] ~ l[i])
Proof
Definitions occuring in Statement : 
select: L[n]
, 
cons: [a / b]
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
add: n + m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
select-cons-tl, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
add-subtract-cancel, 
top_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
addEquality, 
setElimination, 
rename, 
hypothesis, 
natural_numberEquality, 
independent_isectElimination, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
sqequalAxiom, 
because_Cache
Latex:
\mforall{}[i:\mBbbN{}].  \mforall{}[x,l:Top].    ([x  /  l][i  +  1]  \msim{}  l[i])
Date html generated:
2018_05_21-PM-06_20_16
Last ObjectModification:
2018_05_19-PM-05_32_24
Theory : list!
Home
Index