Nuprl Lemma : strong_safety_safety

[A:Type]. ∀[P:(A List) ⟶ ℙ].  (strong_safety(A;x.P[x])  safety(A;x.P[x]))


Proof




Definitions occuring in Statement :  strong_safety: strong_safety(T;tr.P[tr]) safety: safety(A;tr.P[tr]) list: List uall: [x:A]. B[x] prop: so_apply: x[s] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  safety: safety(A;tr.P[tr]) strong_safety: strong_safety(T;tr.P[tr]) uall: [x:A]. B[x] implies:  Q all: x:A. B[x] guard: {T} member: t ∈ T prop: so_apply: x[s] so_lambda: λ2x.t[x]
Lemmas referenced :  sublist_iseg iseg_wf list_wf all_wf sublist_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut hypothesis thin sqequalHypSubstitution dependent_functionElimination hypothesisEquality independent_functionElimination lemma_by_obid isectElimination because_Cache applyEquality lambdaEquality functionEquality cumulativity universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[P:(A  List)  {}\mrightarrow{}  \mBbbP{}].    (strong\_safety(A;x.P[x])  {}\mRightarrow{}  safety(A;x.P[x]))



Date html generated: 2016_05_15-PM-02_06_30
Last ObjectModification: 2015_12_27-AM-00_21_58

Theory : list!


Home Index