Nuprl Lemma : sublist_iseg

[T:Type]. ∀L1,L2:T List.  (L1 ≤ L2  L1 ⊆ L2)


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 sublist: L1 ⊆ L2 list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  iseg: l1 ≤ l2 uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  length_wf_nat equal_wf nat_wf iseg_is_sublist iseg_append0 sublist_wf exists_wf append_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut dependent_set_memberEquality hypothesis introduction extract_by_obid isectElimination cumulativity hypothesisEquality dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination hyp_replacement Error :applyLambdaEquality,  setElimination rename because_Cache lambdaEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    (L1  \mleq{}  L2  {}\mRightarrow{}  L1  \msubseteq{}  L2)



Date html generated: 2016_10_21-AM-10_08_01
Last ObjectModification: 2016_07_12-AM-05_27_04

Theory : list_1


Home Index