Nuprl Lemma : iseg_is_sublist

[T:Type]. ∀L_1,L_2:T List.  (L_1 ≤ L_2  L_1 ⊆ L_2)


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 sublist: L1 ⊆ L2 list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  sublist: L1 ⊆ L2 uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T uimplies: supposing a exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q int_seg: {i..j-} lelt: i ≤ j < k rev_implies:  Q decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T le: A ≤ B not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top prop: cand: c∧ B subtype_rel: A ⊆B less_than': less_than'(a;b) guard: {T} so_lambda: λ2x.t[x] ge: i ≥  nat: so_apply: x[s]
Lemmas referenced :  iseg_length iseg_select decidable__lt length_wf full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf lelt_wf int_seg_wf id_increasing length_wf_nat int_seg_subtype_nat false_wf int_seg_properties increasing_wf all_wf equal_wf select_wf decidable__le itermConstant_wf int_term_value_constant_lemma non_neg_length nat_properties iseg_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis because_Cache dependent_functionElimination dependent_pairFormation productElimination lambdaEquality setElimination rename dependent_set_memberEquality independent_pairFormation unionElimination imageElimination natural_numberEquality approximateComputation independent_functionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality cumulativity applyEquality productEquality functionExtensionality equalityTransitivity equalitySymmetry applyLambdaEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L$_{1}$,L$_{2}$:T  List.    (L$_{1}\000C$  \mleq{}  L$_{2}$  {}\mRightarrow{}  L$_{1}$  \msubseteq{}  L$_{2}$)



Date html generated: 2018_05_21-PM-00_36_31
Last ObjectModification: 2018_05_19-AM-06_43_37

Theory : list_1


Home Index