Nuprl Lemma : Binet-Cauchy-corollary

[r:CRng]. ∀[a,b:ℕ3 ⟶ |r|].  (((a b) (a b)) (((a a) (b b)) +r (-r ((a b) (b a)))) ∈ |r|)


Proof




Definitions occuring in Statement :  scalar-product: (a b) cross-product: (a b) int_seg: {i..j-} uall: [x:A]. B[x] infix_ap: y apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T crng: CRng rng_times: * rng_minus: -r rng_plus: +r rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T crng: CRng rng: Rng
Lemmas referenced :  Binet-Cauchy-identity int_seg_wf rng_car_wf crng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis functionEquality natural_numberEquality setElimination rename sqequalRule isect_memberEquality axiomEquality because_Cache

Latex:
\mforall{}[r:CRng].  \mforall{}[a,b:\mBbbN{}3  {}\mrightarrow{}  |r|].
    (((a  x  b)  .  (a  x  b))  =  (((a  .  a)  *  (b  .  b))  +r  (-r  ((a  .  b)  *  (b  .  a)))))



Date html generated: 2018_05_21-PM-09_42_26
Last ObjectModification: 2018_05_19-PM-04_34_02

Theory : matrices


Home Index