Nuprl Lemma : Binet-Cauchy-identity

[r:CRng]. ∀[a,b,c,d:ℕ3 ⟶ |r|].  (((a b) (c d)) (((a c) (b d)) +r (-r ((a d) (b c)))) ∈ |r|)


Proof




Definitions occuring in Statement :  scalar-product: (a b) cross-product: (a b) int_seg: {i..j-} uall: [x:A]. B[x] infix_ap: y apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T crng: CRng rng_times: * rng_minus: -r rng_plus: +r rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T scalar-product: (a b) cross-product: (a b) rng_sum: rng_sum mon_itop: Π lb ≤ i < ub. E[i] add_grp_of_rng: r↓+gp grp_op: * pi2: snd(t) pi1: fst(t) grp_id: e itop: Π(op,id) lb ≤ i < ub. E[i] ycomb: Y lt_int: i <j subtract: m ifthenelse: if then else fi  btrue: tt select: L[n] cons: [a b] bfalse: ff crng: CRng rng: Rng int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: less_than: a < b squash: T true: True uiff: uiff(P;Q) uimplies: supposing a all: x:A. B[x] ringeq_int_terms: t1 ≡ t2 top: Top
Lemmas referenced :  int_seg_wf rng_car_wf crng_wf infix_ap_wf rng_plus_wf rng_zero_wf rng_times_wf false_wf lelt_wf rng_minus_wf itermAdd_wf itermConstant_wf itermMultiply_wf itermVar_wf itermMinus_wf ringeq-iff-rsub-is-0 ring_polynomial_null int-to-ring_wf ring_term_value_add_lemma ring_term_value_const_lemma int-to-ring-zero ring_term_value_mul_lemma ring_term_value_var_lemma ring_term_value_minus_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesis functionEquality extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality isect_memberEquality axiomEquality because_Cache applyEquality functionExtensionality dependent_set_memberEquality independent_pairFormation lambdaFormation imageMemberEquality baseClosed productElimination independent_isectElimination dependent_functionElimination approximateComputation lambdaEquality int_eqEquality intEquality voidElimination voidEquality

Latex:
\mforall{}[r:CRng].  \mforall{}[a,b,c,d:\mBbbN{}3  {}\mrightarrow{}  |r|].
    (((a  x  b)  .  (c  x  d))  =  (((a  .  c)  *  (b  .  d))  +r  (-r  ((a  .  d)  *  (b  .  c)))))



Date html generated: 2018_05_21-PM-09_42_24
Last ObjectModification: 2018_05_19-PM-04_33_57

Theory : matrices


Home Index