Nuprl Lemma : dual-plane-primitives_wf
DualPlanePrimitives ∈ 𝕌'
Proof
Definitions occuring in Statement : 
dual-plane-primitives: DualPlanePrimitives
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
dual-plane-primitives: DualPlanePrimitives
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
record+: record+, 
record-select: r.x
, 
subtype_rel: A ⊆r B
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
guard: {T}
, 
prop: ℙ
Lemmas referenced : 
record_wf, 
top_wf, 
istype-atom, 
record+_wf, 
istype-universe, 
subtype_rel_universe1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality_alt, 
cumulativity, 
hypothesis, 
lambdaFormation_alt, 
universeEquality, 
universeIsType, 
dependent_functionElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
tokenEquality, 
dependentIntersectionElimination, 
applyEquality, 
instantiate, 
functionEquality, 
because_Cache, 
closedConclusion, 
dependentIntersectionEqElimination
Latex:
DualPlanePrimitives  \mmember{}  \mBbbU{}'
Date html generated:
2019_10_16-AM-11_29_14
Last ObjectModification:
2018_10_16-PM-05_44_09
Theory : matrices
Home
Index