Nuprl Lemma : dual-plane-primitives_wf
DualPlanePrimitives ∈ 𝕌'
Proof
Definitions occuring in Statement :
dual-plane-primitives: DualPlanePrimitives
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
dual-plane-primitives: DualPlanePrimitives
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
record+: record+,
record-select: r.x
,
subtype_rel: A ⊆r B
,
eq_atom: x =a y
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
guard: {T}
,
prop: ℙ
Lemmas referenced :
record_wf,
top_wf,
istype-atom,
record+_wf,
istype-universe,
subtype_rel_universe1
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
sqequalRule,
lambdaEquality_alt,
cumulativity,
hypothesis,
lambdaFormation_alt,
universeEquality,
universeIsType,
dependent_functionElimination,
hypothesisEquality,
equalityTransitivity,
equalitySymmetry,
tokenEquality,
dependentIntersectionElimination,
applyEquality,
instantiate,
functionEquality,
because_Cache,
closedConclusion,
dependentIntersectionEqElimination
Latex:
DualPlanePrimitives \mmember{} \mBbbU{}'
Date html generated:
2019_10_16-AM-11_29_14
Last ObjectModification:
2018_10_16-PM-05_44_09
Theory : matrices
Home
Index