Nuprl Lemma : dual-plane-primitives_wf

DualPlanePrimitives ∈ 𝕌'


Proof




Definitions occuring in Statement :  dual-plane-primitives: DualPlanePrimitives member: t ∈ T universe: Type
Definitions unfolded in proof :  dual-plane-primitives: DualPlanePrimitives member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] record+: record+ record-select: r.x subtype_rel: A ⊆B eq_atom: =a y ifthenelse: if then else fi  btrue: tt guard: {T} prop:
Lemmas referenced :  record_wf top_wf istype-atom record+_wf istype-universe subtype_rel_universe1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality_alt cumulativity hypothesis lambdaFormation_alt universeEquality universeIsType dependent_functionElimination hypothesisEquality equalityTransitivity equalitySymmetry tokenEquality dependentIntersectionElimination applyEquality instantiate functionEquality because_Cache closedConclusion dependentIntersectionEqElimination

Latex:
DualPlanePrimitives  \mmember{}  \mBbbU{}'



Date html generated: 2019_10_16-AM-11_29_14
Last ObjectModification: 2018_10_16-PM-05_44_09

Theory : matrices


Home Index