Nuprl Lemma : invertible-matrix_wf

[r:Rng]. ∀[n:ℕ]. ∀[A:Matrix(n;n;r)].  (invertible-matrix(r;n;A) ∈ ℙ)


Proof




Definitions occuring in Statement :  invertible-matrix: invertible-matrix(r;n;A) matrix: Matrix(n;m;r) nat: uall: [x:A]. B[x] prop: member: t ∈ T rng: Rng
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] rng: Rng nat: invertible-matrix: invertible-matrix(r;n;A) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_wf nat_wf identity-matrix_wf matrix-times_wf equal_wf matrix_wf exists_wf
Rules used in proof :  isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality hypothesisEquality lambdaEquality hypothesis because_Cache rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[r:Rng].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:Matrix(n;n;r)].    (invertible-matrix(r;n;A)  \mmember{}  \mBbbP{})



Date html generated: 2018_05_21-PM-09_39_55
Last ObjectModification: 2017_12_14-PM-01_19_19

Theory : matrices


Home Index