Nuprl Lemma : A-bind2_wf

[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)]. ∀[T,S:Type]. ∀[m:A-map T]. ∀[k:T ⟶ (A-map S)].
  (m >> \x.
   k[x] ∈ A-map S)


Proof




Definitions occuring in Statement :  A-bind2: A-bind2 A-map: A-map array-model: array-model(AType) array: array{i:l}(Val;n) nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T A-bind2: A-bind2 so_apply: x[s]
Lemmas referenced :  A-bind_wf A-map_wf array_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis lambdaEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].  \mforall{}[T,S:Type].  \mforall{}[m:A-map  T].  \mforall{}[k:T  {}\mrightarrow{}  (A-map  S)].
    (m  >>  \mbackslash{}x.
      k[x]  \mmember{}  A-map  S)



Date html generated: 2016_05_15-PM-02_20_37
Last ObjectModification: 2015_12_27-AM-08_58_00

Theory : monads


Home Index