Nuprl Lemma : A-bind2_wf
∀[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)]. ∀[T,S:Type]. ∀[m:A-map T]. ∀[k:T ⟶ (A-map S)].
  (m >> \x.
   k[x] ∈ A-map S)
Proof
Definitions occuring in Statement : 
A-bind2: A-bind2, 
A-map: A-map
, 
array-model: array-model(AType)
, 
array: array{i:l}(Val;n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
A-bind2: A-bind2, 
so_apply: x[s]
Lemmas referenced : 
A-bind_wf, 
A-map_wf, 
array_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].  \mforall{}[T,S:Type].  \mforall{}[m:A-map  T].  \mforall{}[k:T  {}\mrightarrow{}  (A-map  S)].
    (m  >>  \mbackslash{}x.
      k[x]  \mmember{}  A-map  S)
Date html generated:
2016_05_15-PM-02_20_37
Last ObjectModification:
2015_12_27-AM-08_58_00
Theory : monads
Home
Index