Nuprl Lemma : A-eval_wf
∀[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)].  (A-eval(array-model(AType)) ∈ ⋂T:Type. ((A-map T) ⟶ Arr(AType) ⟶ T))
Proof
Definitions occuring in Statement : 
A-map: A-map
, 
array-model: array-model(AType)
, 
Arr: Arr(AType)
, 
array: array{i:l}(Val;n)
, 
A-eval: A-eval(AModel)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
array-model: array-model(AType)
, 
A-map: A-map
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
array-monad: array-monad(AType)
, 
M-map: M-map(mnd)
, 
mk_monad: mk_monad(M;return;bind)
, 
array: array{i:l}(Val;n)
, 
A-eval: A-eval(AModel)
, 
Arr: Arr(AType)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
array_wf, 
nat_wf, 
equal_wf, 
pi1_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality, 
productElimination, 
lambdaFormation, 
instantiate, 
dependent_functionElimination, 
independent_functionElimination, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
productEquality, 
independent_pairEquality, 
functionEquality
Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].
    (A-eval(array-model(AType))  \mmember{}  \mcap{}T:Type.  ((A-map  T)  {}\mrightarrow{}  Arr(AType)  {}\mrightarrow{}  T))
Date html generated:
2017_10_01-AM-08_44_01
Last ObjectModification:
2017_07_26-PM-04_30_04
Theory : monads
Home
Index