Nuprl Lemma : A-eval_wf

[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)].  (A-eval(array-model(AType)) ∈ ⋂T:Type. ((A-map T) ⟶ Arr(AType) ⟶ T))


Proof




Definitions occuring in Statement :  A-map: A-map array-model: array-model(AType) Arr: Arr(AType) array: array{i:l}(Val;n) A-eval: A-eval(AModel) nat: uall: [x:A]. B[x] member: t ∈ T apply: a isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T array-model: array-model(AType) A-map: A-map pi2: snd(t) pi1: fst(t) array-monad: array-monad(AType) M-map: M-map(mnd) mk_monad: mk_monad(M;return;bind) array: array{i:l}(Val;n) A-eval: A-eval(AModel) Arr: Arr(AType) all: x:A. B[x] implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  array_wf nat_wf equal_wf pi1_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination thin cumulativity hypothesisEquality isect_memberEquality because_Cache universeEquality productElimination lambdaFormation instantiate dependent_functionElimination independent_functionElimination lambdaEquality applyEquality functionExtensionality productEquality independent_pairEquality functionEquality

Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].
    (A-eval(array-model(AType))  \mmember{}  \mcap{}T:Type.  ((A-map  T)  {}\mrightarrow{}  Arr(AType)  {}\mrightarrow{}  T))



Date html generated: 2017_10_01-AM-08_44_01
Last ObjectModification: 2017_07_26-PM-04_30_04

Theory : monads


Home Index