Nuprl Lemma : A-map'_wf
∀[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)].  (A-map'(array-model(AType)) ∈ Type ⟶ Type)
Proof
Definitions occuring in Statement : 
A-map': A-map'(AModel)
, 
array-model: array-model(AType)
, 
array: array{i:l}(Val;n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
array-model: array-model(AType)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
A-map': A-map'(AModel)
, 
pi2: snd(t)
, 
pi1: fst(t)
Lemmas referenced : 
M-map_wf, 
array-monad'_wf, 
array_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].    (A-map'(array-model(AType))  \mmember{}  Type  {}\mrightarrow{}  Type)
Date html generated:
2016_05_15-PM-02_18_16
Last ObjectModification:
2015_12_27-AM-08_58_59
Theory : monads
Home
Index