Nuprl Lemma : A-map'_wf

[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)].  (A-map'(array-model(AType)) ∈ Type ⟶ Type)


Proof




Definitions occuring in Statement :  A-map': A-map'(AModel) array-model: array-model(AType) array: array{i:l}(Val;n) nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  array-model: array-model(AType) uall: [x:A]. B[x] member: t ∈ T A-map': A-map'(AModel) pi2: snd(t) pi1: fst(t)
Lemmas referenced :  M-map_wf array-monad'_wf array_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].    (A-map'(array-model(AType))  \mmember{}  Type  {}\mrightarrow{}  Type)



Date html generated: 2016_05_15-PM-02_18_16
Last ObjectModification: 2015_12_27-AM-08_58_59

Theory : monads


Home Index