Nuprl Lemma : array-monad'_wf

[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)].  (array-monad'(AType) ∈ Monad)


Proof




Definitions occuring in Statement :  array-monad': array-monad'(AType) array: array{i:l}(Val;n) monad: Monad nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T array-monad': array-monad'(AType) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a top: Top all: x:A. B[x] squash: T prop: true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  array_wf nat_wf mk_monad_wf Arr_wf top_wf subtype_rel_dep_function equal_wf squash_wf true_wf eta_conv iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination thin cumulativity hypothesisEquality isect_memberEquality because_Cache universeEquality lambdaEquality functionEquality applyEquality independent_isectElimination voidElimination voidEquality lambdaFormation functionExtensionality imageElimination natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination dependent_functionElimination

Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].    (array-monad'(AType)  \mmember{}  Monad)



Date html generated: 2017_10_01-AM-08_43_57
Last ObjectModification: 2017_07_26-PM-04_30_01

Theory : monads


Home Index