Nuprl Lemma : array-monad'_wf
∀[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)].  (array-monad'(AType) ∈ Monad)
Proof
Definitions occuring in Statement : 
array-monad': array-monad'(AType)
, 
array: array{i:l}(Val;n)
, 
monad: Monad
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
array-monad': array-monad'(AType)
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
top: Top
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
array_wf, 
nat_wf, 
mk_monad_wf, 
Arr_wf, 
top_wf, 
subtype_rel_dep_function, 
equal_wf, 
squash_wf, 
true_wf, 
eta_conv, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality, 
lambdaEquality, 
functionEquality, 
applyEquality, 
independent_isectElimination, 
voidElimination, 
voidEquality, 
lambdaFormation, 
functionExtensionality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination
Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].    (array-monad'(AType)  \mmember{}  Monad)
Date html generated:
2017_10_01-AM-08_43_57
Last ObjectModification:
2017_07_26-PM-04_30_01
Theory : monads
Home
Index