Nuprl Lemma : A-null-property

[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)].
  ∀A:Arr(AType). ∀k:ℕn.  (A-post-val(AType;A-null(AType);A;k) A-pre-val(AType;A;k) ∈ Val)


Proof




Definitions occuring in Statement :  A-null: A-null(AType) A-post-val: A-post-val(AType;prog;A;i) Arr: Arr(AType) array: array{i:l}(Val;n) A-pre-val: A-pre-val(AType;A;i) int_seg: {i..j-} nat: uall: [x:A]. B[x] all: x:A. B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] A-pre-val: A-pre-val(AType;A;i) A-null: A-null(AType) A-post-val: A-post-val(AType;prog;A;i) nat: array: array{i:l}(Val;n) Arr: Arr(AType) pi1: fst(t) idx: idx(AType) array-model: array-model(AType) A-fetch': A-fetch'(AModel) A-coerce: A-coerce(AModel) A-return: A-return(AModel) A-bind: A-bind(AModel) A-eval: A-eval(AModel) pi2: snd(t) array-monad: array-monad(AType) M-return: M-return(Mnd) M-bind: M-bind(Mnd) let: let mk_monad: mk_monad(M;return;bind)
Lemmas referenced :  int_seg_wf Arr_wf array_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination axiomEquality because_Cache isect_memberEquality universeEquality productElimination applyEquality

Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].
    \mforall{}A:Arr(AType).  \mforall{}k:\mBbbN{}n.    (A-post-val(AType;A-null(AType);A;k)  =  A-pre-val(AType;A;k))



Date html generated: 2016_05_15-PM-02_19_19
Last ObjectModification: 2015_12_27-AM-08_58_19

Theory : monads


Home Index