Nuprl Lemma : M-leftunit

[Mnd:Monad]. ∀[T,S:Type]. ∀[x:T]. ∀[f:T ⟶ (M-map(Mnd) S)].
  ((M-bind(Mnd) (M-return(Mnd) x) f) (f x) ∈ (M-map(Mnd) S))


Proof




Definitions occuring in Statement :  M-bind: M-bind(Mnd) M-return: M-return(Mnd) M-map: M-map(mnd) monad: Monad uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T monad: Monad M-return: M-return(Mnd) M-bind: M-bind(Mnd) M-map: M-map(mnd) pi1: fst(t) pi2: snd(t)
Lemmas referenced :  M-map_wf monad_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule hypothesis functionEquality hypothesisEquality applyEquality lemma_by_obid isectElimination isect_memberEquality axiomEquality because_Cache universeEquality

Latex:
\mforall{}[Mnd:Monad].  \mforall{}[T,S:Type].  \mforall{}[x:T].  \mforall{}[f:T  {}\mrightarrow{}  (M-map(Mnd)  S)].
    ((M-bind(Mnd)  (M-return(Mnd)  x)  f)  =  (f  x))



Date html generated: 2016_05_15-PM-02_16_23
Last ObjectModification: 2015_12_27-AM-08_59_27

Theory : monads


Home Index