Nuprl Lemma : nullset-monotone
∀p:FinProbSpace. ∀[P,Q:(ℕ ⟶ Outcome) ⟶ ℙ]. ((∀s:ℕ ⟶ Outcome. (Q[s]
⇒ P[s]))
⇒ nullset(p;P)
⇒ nullset(p;Q))
Proof
Definitions occuring in Statement :
nullset: nullset(p;S)
,
p-outcome: Outcome
,
finite-prob-space: FinProbSpace
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
nullset: nullset(p;S)
,
member: t ∈ T
,
exists: ∃x:A. B[x]
,
and: P ∧ Q
,
so_apply: x[s]
,
prop: ℙ
,
cand: A c∧ B
,
so_lambda: λ2x.t[x]
,
subtype_rel: A ⊆r B
Lemmas referenced :
nat_wf,
p-outcome_wf,
all_wf,
p-open-member_wf,
p-measure-le_wf,
rationals_wf,
qless_wf,
int-subtype-rationals,
nullset_wf,
finite-prob-space_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
isect_memberFormation,
sqequalHypSubstitution,
cut,
hypothesis,
dependent_functionElimination,
thin,
hypothesisEquality,
productElimination,
dependent_pairFormation,
independent_pairFormation,
promote_hyp,
independent_functionElimination,
because_Cache,
applyEquality,
functionEquality,
lemma_by_obid,
isectElimination,
productEquality,
sqequalRule,
lambdaEquality,
setElimination,
rename,
setEquality,
natural_numberEquality,
cumulativity,
universeEquality
Latex:
\mforall{}p:FinProbSpace
\mforall{}[P,Q:(\mBbbN{} {}\mrightarrow{} Outcome) {}\mrightarrow{} \mBbbP{}]. ((\mforall{}s:\mBbbN{} {}\mrightarrow{} Outcome. (Q[s] {}\mRightarrow{} P[s])) {}\mRightarrow{} nullset(p;P) {}\mRightarrow{} nullset(p;Q))
Date html generated:
2016_05_15-PM-11_50_35
Last ObjectModification:
2015_12_28-PM-07_14_34
Theory : randomness
Home
Index