Nuprl Lemma : half-cubes-of_wf
∀[k:ℕ]. ∀[c:{c:ℚCube(k)| ↑Inhabited(c)} ].
  (half-cubes-of(k;c) ∈ {L:ℚCube(k) List| no_repeats(ℚCube(k);L) ∧ (∀h:ℚCube(k). ((h ∈ L) 
⇐⇒ ↑is-half-cube(k;h;c)))} )
Proof
Definitions occuring in Statement : 
half-cubes-of: half-cubes-of(k;c)
, 
inhabited-rat-cube: Inhabited(c)
, 
is-half-cube: is-half-cube(k;h;c)
, 
rational-cube: ℚCube(k)
, 
no_repeats: no_repeats(T;l)
, 
l_member: (x ∈ l)
, 
list: T List
, 
nat: ℕ
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
half-cubes-of: half-cubes-of(k;c)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-nat, 
rational-cube_wf, 
inhabited-rat-cube_wf, 
istype-assert, 
half-cubes_wf
Rules used in proof : 
inhabitedIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
universeIsType, 
setIsType, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
dependent_set_memberEquality_alt, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
applyEquality, 
sqequalRule, 
rename, 
thin, 
setElimination, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\{c:\mBbbQ{}Cube(k)|  \muparrow{}Inhabited(c)\}  ].
    (half-cubes-of(k;c)  \mmember{}  \{L:\mBbbQ{}Cube(k)  List| 
                                                  no\_repeats(\mBbbQ{}Cube(k);L)
                                                  \mwedge{}  (\mforall{}h:\mBbbQ{}Cube(k).  ((h  \mmember{}  L)  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}is-half-cube(k;h;c)))\}  )
Date html generated:
2019_10_29-AM-07_53_27
Last ObjectModification:
2019_10_21-PM-03_01_22
Theory : rationals
Home
Index