Nuprl Lemma : half-cubes-of_wf

[k:ℕ]. ∀[c:{c:ℚCube(k)| ↑Inhabited(c)} ].
  (half-cubes-of(k;c) ∈ {L:ℚCube(k) List| no_repeats(ℚCube(k);L) ∧ (∀h:ℚCube(k). ((h ∈ L) ⇐⇒ ↑is-half-cube(k;h;c)))} )


Proof




Definitions occuring in Statement :  half-cubes-of: half-cubes-of(k;c) inhabited-rat-cube: Inhabited(c) is-half-cube: is-half-cube(k;h;c) rational-cube: Cube(k) no_repeats: no_repeats(T;l) l_member: (x ∈ l) list: List nat: assert: b uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  half-cubes-of: half-cubes-of(k;c) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-nat rational-cube_wf inhabited-rat-cube_wf istype-assert half-cubes_wf
Rules used in proof :  inhabitedIsType isectIsTypeImplies isect_memberEquality_alt universeIsType setIsType equalitySymmetry equalityTransitivity axiomEquality dependent_set_memberEquality_alt hypothesis hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid applyEquality sqequalRule rename thin setElimination cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\{c:\mBbbQ{}Cube(k)|  \muparrow{}Inhabited(c)\}  ].
    (half-cubes-of(k;c)  \mmember{}  \{L:\mBbbQ{}Cube(k)  List| 
                                                  no\_repeats(\mBbbQ{}Cube(k);L)
                                                  \mwedge{}  (\mforall{}h:\mBbbQ{}Cube(k).  ((h  \mmember{}  L)  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}is-half-cube(k;h;c)))\}  )



Date html generated: 2019_10_29-AM-07_53_27
Last ObjectModification: 2019_10_21-PM-03_01_22

Theory : rationals


Home Index