Nuprl Lemma : half-cubes_wf
∀[k:ℕ]
  (half-cubes(k) ∈ c:{c:ℚCube(k)| ↑Inhabited(c)}  ⟶ {L:ℚCube(k) List| 
                                   no_repeats(ℚCube(k);L) ∧ (∀h:ℚCube(k). ((h ∈ L) 
⇐⇒ ↑is-half-cube(k;h;c)))} )
Proof
Definitions occuring in Statement : 
half-cubes: half-cubes(k)
, 
inhabited-rat-cube: Inhabited(c)
, 
is-half-cube: is-half-cube(k;h;c)
, 
rational-cube: ℚCube(k)
, 
no_repeats: no_repeats(T;l)
, 
l_member: (x ∈ l)
, 
list: T List
, 
nat: ℕ
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
half-cubes-listable-ext, 
primtailrec: primtailrec(n;i;b;f)
, 
primrec: primrec(n;b;c)
, 
half-cubes: half-cubes(k)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
istype-nat, 
is-half-cube_wf, 
l_member_wf, 
iff_wf, 
no_repeats_wf, 
list_wf, 
sq_exists_wf, 
inhabited-rat-cube_wf, 
assert_wf, 
rational-cube_wf, 
nat_wf, 
subtype_rel_self, 
half-cubes-listable-ext
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
universeIsType, 
rename, 
setElimination, 
productEquality, 
lambdaEquality_alt, 
hypothesisEquality, 
setEquality, 
functionEquality, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
instantiate, 
thin, 
applyEquality, 
cut, 
introduction, 
isect_memberFormation_alt, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}]
    (half-cubes(k)  \mmember{}  c:\{c:\mBbbQ{}Cube(k)|  \muparrow{}Inhabited(c)\}    {}\mrightarrow{}  \{L:\mBbbQ{}Cube(k)  List| 
                                                                      no\_repeats(\mBbbQ{}Cube(k);L)
                                                                      \mwedge{}  (\mforall{}h:\mBbbQ{}Cube(k).  ((h  \mmember{}  L)  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}is-half-cube(k;h;c)))\}  )
Date html generated:
2019_10_29-AM-07_53_14
Last ObjectModification:
2019_10_21-PM-02_59_47
Theory : rationals
Home
Index