Nuprl Lemma : half-cubes_wf

[k:ℕ]
  (half-cubes(k) ∈ c:{c:ℚCube(k)| ↑Inhabited(c)}  ⟶ {L:ℚCube(k) List| 
                                   no_repeats(ℚCube(k);L) ∧ (∀h:ℚCube(k). ((h ∈ L) ⇐⇒ ↑is-half-cube(k;h;c)))} )


Proof




Definitions occuring in Statement :  half-cubes: half-cubes(k) inhabited-rat-cube: Inhabited(c) is-half-cube: is-half-cube(k;h;c) rational-cube: Cube(k) no_repeats: no_repeats(T;l) l_member: (x ∈ l) list: List nat: assert: b uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  so_apply: x[s] implies:  Q rev_implies:  Q iff: ⇐⇒ Q and: P ∧ Q so_lambda: λ2x.t[x] prop: subtype_rel: A ⊆B half-cubes-listable-ext primtailrec: primtailrec(n;i;b;f) primrec: primrec(n;b;c) half-cubes: half-cubes(k) member: t ∈ T uall: [x:A]. B[x] sq_exists: x:A [B[x]] all: x:A. B[x]
Lemmas referenced :  istype-nat is-half-cube_wf l_member_wf iff_wf no_repeats_wf list_wf sq_exists_wf inhabited-rat-cube_wf assert_wf rational-cube_wf nat_wf subtype_rel_self half-cubes-listable-ext
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality universeIsType rename setElimination productEquality lambdaEquality_alt hypothesisEquality setEquality functionEquality isectElimination sqequalHypSubstitution hypothesis extract_by_obid instantiate thin applyEquality cut introduction isect_memberFormation_alt computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}]
    (half-cubes(k)  \mmember{}  c:\{c:\mBbbQ{}Cube(k)|  \muparrow{}Inhabited(c)\}    {}\mrightarrow{}  \{L:\mBbbQ{}Cube(k)  List| 
                                                                      no\_repeats(\mBbbQ{}Cube(k);L)
                                                                      \mwedge{}  (\mforall{}h:\mBbbQ{}Cube(k).  ((h  \mmember{}  L)  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}is-half-cube(k;h;c)))\}  )



Date html generated: 2019_10_29-AM-07_53_14
Last ObjectModification: 2019_10_21-PM-02_59_47

Theory : rationals


Home Index