Nuprl Lemma : half-cubes-listable-ext
∀k:ℕ. ∀c:{c:ℚCube(k)| ↑Inhabited(c)} .
  (∃L:ℚCube(k) List [(no_repeats(ℚCube(k);L) ∧ (∀h:ℚCube(k). ((h ∈ L) 
⇐⇒ ↑is-half-cube(k;h;c))))])
Proof
Definitions occuring in Statement : 
inhabited-rat-cube: Inhabited(c)
, 
is-half-cube: is-half-cube(k;h;c)
, 
rational-cube: ℚCube(k)
, 
no_repeats: no_repeats(T;l)
, 
l_member: (x ∈ l)
, 
list: T List
, 
nat: ℕ
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
has-value: (a)↓
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
uall: ∀[x:A]. B[x]
, 
decidable__int_equal, 
any: any x
, 
bool_cases_sqequal, 
decidable__equal_int, 
half-cubes-listable, 
half-cubes: half-cubes(k)
, 
ifthenelse: if b then t else f fi 
, 
subtract: n - m
, 
cons: [a / b]
, 
it: ⋅
, 
nil: []
, 
member: t ∈ T
Lemmas referenced : 
is-exception_wf, 
has-value_wf_base, 
lifting-strict-decide, 
strict4-apply, 
lifting-strict-spread, 
strict4-decide, 
istype-void, 
lifting-strict-int_eq, 
half-cubes-listable, 
decidable__int_equal, 
bool_cases_sqequal, 
decidable__equal_int
Rules used in proof : 
closedConclusion, 
baseApply, 
exceptionSqequal, 
axiomSqleEquality, 
decideExceptionCases, 
independent_functionElimination, 
dependent_functionElimination, 
equalityIstype, 
sqleReflexivity, 
unionElimination, 
hypothesisEquality, 
callbyvalueDecide, 
divergentSqle, 
sqequalSqle, 
lambdaFormation_alt, 
inhabitedIsType, 
independent_isectElimination, 
voidElimination, 
isect_memberEquality_alt, 
baseClosed, 
isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c:\{c:\mBbbQ{}Cube(k)|  \muparrow{}Inhabited(c)\}  .
    (\mexists{}L:\mBbbQ{}Cube(k)  List  [(no\_repeats(\mBbbQ{}Cube(k);L)  \mwedge{}  (\mforall{}h:\mBbbQ{}Cube(k).  ((h  \mmember{}  L)  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}is-half-cube(k;h;c))))])
Date html generated:
2019_10_29-AM-07_53_08
Last ObjectModification:
2019_10_21-PM-02_59_10
Theory : rationals
Home
Index