Nuprl Lemma : half-cubes-listable

k:ℕ. ∀c:{c:ℚCube(k)| ↑Inhabited(c)} .
  (∃L:ℚCube(k) List [(no_repeats(ℚCube(k);L) ∧ (∀h:ℚCube(k). ((h ∈ L) ⇐⇒ ↑is-half-cube(k;h;c))))])


Proof




Definitions occuring in Statement :  inhabited-rat-cube: Inhabited(c) is-half-cube: is-half-cube(k;h;c) rational-cube: Cube(k) no_repeats: no_repeats(T;l) l_member: (x ∈ l) list: List nat: assert: b all: x:A. B[x] sq_exists: x:A [B[x]] iff: ⇐⇒ Q and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A implies:  Q false: False iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: sq_exists: x:A [B[x]] so_lambda: λ2x.t[x] so_apply: x[s] rational-cube: Cube(k) int_seg: {i..j-} lelt: i ≤ j < k cand: c∧ B assert: b ifthenelse: if then else fi  is-half-cube: is-half-cube(k;h;c) bdd-all: bdd-all(n;i.P[i]) primrec: primrec(n;b;c) primtailrec: primtailrec(n;i;b;f) btrue: tt true: True less_than: a < b squash: T uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B rev_uimplies: rev_uimplies(P;Q) guard: {T} rational-interval: Interval rat-interval-dimension: dim(I) bool: 𝔹 unit: Unit it: bfalse: ff sq_type: SQType(T) bnot: ¬bb istype: istype(T) inject: Inj(A;B;f) l_disjoint: l_disjoint(T;l1;l2) pi2: snd(t) pi1: fst(t) qavg: qavg(a;b) qeq: qeq(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) eq_int: (i =z j) qadd: s is-half-interval: is-half-interval(I;J) band: p ∧b q inhabited-rat-interval: Inhabited(I)
Lemmas referenced :  rational-cube_wf istype-void istype-le istype-assert inhabited-rat-cube_wf decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma list_wf no_repeats_wf l_member_wf is-half-cube_wf istype-less_than primrec-wf2 assert_wf sq_exists_wf iff_wf istype-nat cons_wf int_seg_properties int_seg_wf nil_wf no_repeats_singleton member_singleton subtype_rel_function rational-interval_wf int_seg_subtype istype-false not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-commutes le-add-cancel2 subtype_rel_self assert-inhabited-rat-cube decidable__equal_int rat-interval-dimension_wf decidable__lt q_less_wf eqtt_to_assert assert-q_less-eq iff_weakening_equal eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot qless_wf int_subtype_base lt_int_wf assert_of_lt_int qavg_wf append_wf map_wf no_repeats-append no_repeats_map subtype_rel_dep_function iff_weakening_uiff less_than_wf member-map qmul_wf equal_wf squash_wf true_wf istype-universe rationals_wf qmul-qdiv-cancel int-subtype-rationals qadd_wf assert-qeq qless_transitivity_2_qorder qle_weakening_eq_qorder qless_irreflexivity qadd_ac_1_q qadd_comm_q qinverse_q mon_ident_q q_distrib qmul_one_qrng member_append assert_functionality_wrt_uiff intformeq_wf int_formula_prop_eq_lemma assert-is-half-cube set_subtype_base lelt_wf is-half-interval_wf bor_wf qeq_wf2 bool_cases band_wf btrue_wf bfalse_wf member_wf iff_transitivity assert_of_bor assert_of_band assert_elim ifthenelse_wf q_le_wf assert-q_le-eq qle-iff qle_wf bnot_wf not_wf qavg-same assert_of_bnot equal-wf-T-base uiff_transitivity2 qmul-preserves-eq qdiv_wf qmul_ident
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin setIsType universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation sqequalRule voidElimination hypothesis hypothesisEquality rename setElimination dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt functionIsType productIsType because_Cache functionEquality setEquality productEquality inhabitedIsType dependent_set_memberFormation_alt productElimination functionExtensionality imageElimination addEquality minusEquality multiplyEquality applyEquality equalityTransitivity equalitySymmetry equalityElimination equalityIstype promote_hyp instantiate cumulativity intEquality baseClosed sqequalBase closedConclusion independent_pairEquality applyLambdaEquality universeEquality imageMemberEquality unionIsType inlFormation_alt inrFormation_alt hyp_replacement unionEquality

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c:\{c:\mBbbQ{}Cube(k)|  \muparrow{}Inhabited(c)\}  .
    (\mexists{}L:\mBbbQ{}Cube(k)  List  [(no\_repeats(\mBbbQ{}Cube(k);L)  \mwedge{}  (\mforall{}h:\mBbbQ{}Cube(k).  ((h  \mmember{}  L)  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}is-half-cube(k;h;c))))])



Date html generated: 2020_05_20-AM-09_19_41
Last ObjectModification: 2019_11_02-PM-07_44_47

Theory : rationals


Home Index