Nuprl Lemma : q-ceil_wf

[r:ℚ]. (q-ceil(r) ∈ ℤ)


Proof




Definitions occuring in Statement :  q-ceil: q-ceil(r) rationals: uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  q-ceil: q-ceil(r) uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B and: P ∧ Q prop:
Lemmas referenced :  rat-int-bound_wf and_wf qless_wf subtract_wf int-subtype-rationals qle_wf rationals_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename setEquality intEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[r:\mBbbQ{}].  (q-ceil(r)  \mmember{}  \mBbbZ{})



Date html generated: 2016_05_15-PM-11_34_56
Last ObjectModification: 2015_12_27-PM-07_27_33

Theory : rationals


Home Index