Nuprl Lemma : qbetween_wf

[a,b,c:ℚ].  (a ≤ b ≤ c ∈ ℙ)


Proof




Definitions occuring in Statement :  qbetween: a ≤ b ≤ c rationals: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  qbetween: a ≤ b ≤ c uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  and_wf qle_wf rationals_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[a,b,c:\mBbbQ{}].    (a  \mleq{}  b  \mleq{}  c  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-11_05_22
Last ObjectModification: 2015_12_27-PM-07_45_59

Theory : rationals


Home Index