Nuprl Lemma : qbetween_wf
∀[a,b,c:ℚ].  (a ≤ b ≤ c ∈ ℙ)
Proof
Definitions occuring in Statement : 
qbetween: a ≤ b ≤ c
, 
rationals: ℚ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
qbetween: a ≤ b ≤ c
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
and_wf, 
qle_wf, 
rationals_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[a,b,c:\mBbbQ{}].    (a  \mleq{}  b  \mleq{}  c  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-11_05_22
Last ObjectModification:
2015_12_27-PM-07_45_59
Theory : rationals
Home
Index