Nuprl Lemma : qeq-trans

Trans(ℤ ⋃ (ℤ × ℤ-o);r,s.qeq(r;s) tt)


Proof




Definitions occuring in Statement :  qeq: qeq(r;s) trans: Trans(T;x,y.E[x; y]) int_nzero: -o b-union: A ⋃ B btrue: tt bool: 𝔹 product: x:A × B[x] int: equal: t ∈ T
Definitions unfolded in proof :  trans: Trans(T;x,y.E[x; y]) all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop:
Lemmas referenced :  qeq-functionality equal_wf bool_wf qeq_wf btrue_wf b-union_wf int_nzero_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis equalityTransitivity intEquality productEquality

Latex:
Trans(\mBbbZ{}  \mcup{}  (\mBbbZ{}  \mtimes{}  \mBbbZ{}\msupminus{}\msupzero{});r,s.qeq(r;s)  =  tt)



Date html generated: 2016_05_15-PM-10_36_46
Last ObjectModification: 2015_12_27-PM-08_01_12

Theory : rationals


Home Index