Nuprl Lemma : qeq-trans
Trans(ℤ ⋃ (ℤ × ℤ-o);r,s.qeq(r;s) = tt)
Proof
Definitions occuring in Statement : 
qeq: qeq(r;s)
, 
trans: Trans(T;x,y.E[x; y])
, 
int_nzero: ℤ-o
, 
b-union: A ⋃ B
, 
btrue: tt
, 
bool: 𝔹
, 
product: x:A × B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
trans: Trans(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
Lemmas referenced : 
qeq-functionality, 
equal_wf, 
bool_wf, 
qeq_wf, 
btrue_wf, 
b-union_wf, 
int_nzero_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
equalityTransitivity, 
intEquality, 
productEquality
Latex:
Trans(\mBbbZ{}  \mcup{}  (\mBbbZ{}  \mtimes{}  \mBbbZ{}\msupminus{}\msupzero{});r,s.qeq(r;s)  =  tt)
Date html generated:
2016_05_15-PM-10_36_46
Last ObjectModification:
2015_12_27-PM-08_01_12
Theory : rationals
Home
Index