Nuprl Lemma : qle_connex

a,b:ℚ.  ((a ≤ b) ∨ (b ≤ a))


Proof




Definitions occuring in Statement :  qle: r ≤ s rationals: all: x:A. B[x] or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T or: P ∨ Q prop: uall: [x:A]. B[x] guard: {T} uimplies: supposing a
Lemmas referenced :  qless_trichot_qorder qle_wf rationals_wf qle_weakening_lt_qorder qle_weakening_eq_qorder
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality unionElimination inlFormation isectElimination hypothesis sqequalRule inrFormation independent_isectElimination equalitySymmetry

Latex:
\mforall{}a,b:\mBbbQ{}.    ((a  \mleq{}  b)  \mvee{}  (b  \mleq{}  a))



Date html generated: 2016_05_15-PM-11_02_13
Last ObjectModification: 2015_12_27-PM-07_47_57

Theory : rationals


Home Index