Nuprl Lemma : qle_connex
∀a,b:ℚ.  ((a ≤ b) ∨ (b ≤ a))
Proof
Definitions occuring in Statement : 
qle: r ≤ s
, 
rationals: ℚ
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
or: P ∨ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
qless_trichot_qorder, 
qle_wf, 
rationals_wf, 
qle_weakening_lt_qorder, 
qle_weakening_eq_qorder
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
unionElimination, 
inlFormation, 
isectElimination, 
hypothesis, 
sqequalRule, 
inrFormation, 
independent_isectElimination, 
equalitySymmetry
Latex:
\mforall{}a,b:\mBbbQ{}.    ((a  \mleq{}  b)  \mvee{}  (b  \mleq{}  a))
Date html generated:
2016_05_15-PM-11_02_13
Last ObjectModification:
2015_12_27-PM-07_47_57
Theory : rationals
Home
Index