Nuprl Lemma : rat-sub-cube_wf

[k:ℕ]. ∀[a,b:ℚCube(k)].  (rat-sub-cube(k;a;b) ∈ ℙ)


Proof




Definitions occuring in Statement :  rat-sub-cube: rat-sub-cube(k;a;b) rational-cube: Cube(k) nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rat-sub-cube: rat-sub-cube(k;a;b) prop: all: x:A. B[x] nat: rational-cube: Cube(k)
Lemmas referenced :  int_seg_wf rat-sub-interval_wf rational-cube_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule functionEquality extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis applyEquality axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[a,b:\mBbbQ{}Cube(k)].    (rat-sub-cube(k;a;b)  \mmember{}  \mBbbP{})



Date html generated: 2020_05_20-AM-09_17_43
Last ObjectModification: 2019_11_14-PM-08_04_40

Theory : rationals


Home Index