Nuprl Lemma : rational-has-value
∀[r:ℚ]. has-valueall(r)
Proof
Definitions occuring in Statement : 
rationals: ℚ
, 
has-valueall: has-valueall(a)
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
has-valueall: has-valueall(a)
, 
has-value: (a)↓
Lemmas referenced : 
valueall-type-has-valueall, 
rationals_wf, 
rationals-valueall-type
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
hypothesisEquality, 
sqequalRule, 
axiomSqleEquality
Latex:
\mforall{}[r:\mBbbQ{}].  has-valueall(r)
Date html generated:
2016_05_15-PM-10_37_15
Last ObjectModification:
2015_12_27-PM-08_00_37
Theory : rationals
Home
Index