Nuprl Lemma : rational-has-value

[r:ℚ]. has-valueall(r)


Proof




Definitions occuring in Statement :  rationals: has-valueall: has-valueall(a) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a has-valueall: has-valueall(a) has-value: (a)↓
Lemmas referenced :  valueall-type-has-valueall rationals_wf rationals-valueall-type
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination hypothesisEquality sqequalRule axiomSqleEquality

Latex:
\mforall{}[r:\mBbbQ{}].  has-valueall(r)



Date html generated: 2016_05_15-PM-10_37_15
Last ObjectModification: 2015_12_27-PM-08_00_37

Theory : rationals


Home Index