Nuprl Lemma : select-qv-mul

[as:Top List]. ∀[r:Top]. ∀[i:ℕdimension(as)].  (qv-mul(r;as)[i] as[i])


Proof




Definitions occuring in Statement :  qv-mul: qv-mul(r;bs) qv-dim: dimension(as) qmul: s select: L[n] list: List int_seg: {i..j-} uall: [x:A]. B[x] top: Top natural_number: $n sqequal: t
Definitions unfolded in proof :  qv-dim: dimension(as) uall: [x:A]. B[x] member: t ∈ T qv-mul: qv-mul(r;bs) top: Top
Lemmas referenced :  select-map int_seg_wf length_wf top_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesisEquality hypothesis sqequalAxiom natural_numberEquality because_Cache

Latex:
\mforall{}[as:Top  List].  \mforall{}[r:Top].  \mforall{}[i:\mBbbN{}dimension(as)].    (qv-mul(r;as)[i]  \msim{}  r  *  as[i])



Date html generated: 2016_05_15-PM-11_20_47
Last ObjectModification: 2015_12_27-PM-07_33_04

Theory : rationals


Home Index