Nuprl Lemma : test-sq-lift3

[x:Top]. (if (x) < (0)  then 1  else (1 1) if (x) < (0)  then 2  else 3)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] top: Top less: if (a) < (b)  then c  else d add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] top: Top uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T
Lemmas referenced :  top_wf is-exception_wf base_wf has-value_wf_base int-value-type value-type-has-value lifting-strict-less
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueAdd hypothesis baseApply closedConclusion hypothesisEquality productElimination because_Cache equalityTransitivity equalitySymmetry addExceptionCases exceptionSqequal inrFormation intEquality imageMemberEquality imageElimination inlFormation sqequalAxiom

Latex:
\mforall{}[x:Top].  (if  (x)  <  (0)    then  1    else  (1  +  1)  +  1  \msim{}  if  (x)  <  (0)    then  2    else  3)



Date html generated: 2016_05_15-PM-10_36_17
Last ObjectModification: 2016_01_16-PM-09_37_30

Theory : rationals


Home Index