Nuprl Lemma : cat-square-commutes-sym
∀[C:SmallCategory]. ∀[x,y1,y2,z:cat-ob(C)]. ∀[x_y1:cat-arrow(C) x y1]. ∀[y1_z:cat-arrow(C) y1 z]. ∀[x_y2:cat-arrow(C) x 
                                                                                                         y2].
∀[y2_z:cat-arrow(C) y2 z].
  uiff(x_y1 o y1_z = x_y2 o y2_z;x_y2 o y2_z = x_y1 o y1_z)
Proof
Definitions occuring in Statement : 
cat-square-commutes: x_y1 o y1_z = x_y2 o y2_z
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
Definitions unfolded in proof : 
prop: ℙ
, 
cat-square-commutes: x_y1 o y1_z = x_y2 o y2_z
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
small-category_wf, 
cat-ob_wf, 
cat-arrow_wf, 
cat-square-commutes_wf
Rules used in proof : 
applyEquality, 
equalityTransitivity, 
because_Cache, 
isect_memberEquality, 
independent_pairEquality, 
productElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
lemma_by_obid, 
axiomEquality, 
sqequalRule, 
hypothesis, 
equalitySymmetry, 
sqequalHypSubstitution, 
independent_pairFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[x,y1,y2,z:cat-ob(C)].  \mforall{}[x$_{y1}$:cat-arrow(C)  x  y1].  \mforall{}[y1\mbackslash{}\000Cff24_{z}$:cat-arrow(C)  y1  z].
\mforall{}[x$_{y2}$:cat-arrow(C)  x  y2].  \mforall{}[y2$_{z}$:cat-arrow(C)  y2  z]\000C.
    uiff(x$_{y1}$  o  y1$_{z}$  =  x$_{y2}$  o  \000Cy2$_{z}$;x$_{y2}$  o  y2$_{z}$  =  x$\mbackslash{}ff\000C5f{y1}$  o  y1$_{z}$)
Date html generated:
2020_05_20-AM-07_54_55
Last ObjectModification:
2015_12_28-PM-02_22_59
Theory : small!categories
Home
Index