Nuprl Lemma : functor-arrow-prod-id
∀[A,B,C:SmallCategory]. ∀[F:Functor(A × B;C)]. ∀[a:cat-ob(A)]. ∀[b:cat-ob(B)].
  ((F <a, b> <a, b> <cat-id(A) a, cat-id(B) b>) = (cat-id(C) (F <a, b>)) ∈ (cat-arrow(C) (F <a, b>) (F <a, b>)))
Proof
Definitions occuring in Statement : 
product-cat: A × B
, 
functor-arrow: arrow(F)
, 
functor-ob: ob(F)
, 
cat-functor: Functor(C1;C2)
, 
cat-id: cat-id(C)
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
pair: <a, b>
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
product-cat: A × B
, 
pi2: snd(t)
Lemmas referenced : 
functor-arrow-id, 
product-cat_wf, 
cat-ob_wf, 
cat-functor_wf, 
small-category_wf, 
id_prod_cat_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
sqequalRule, 
independent_pairEquality, 
universeIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
Error :memTop
Latex:
\mforall{}[A,B,C:SmallCategory].  \mforall{}[F:Functor(A  \mtimes{}  B;C)].  \mforall{}[a:cat-ob(A)].  \mforall{}[b:cat-ob(B)].
    ((F  <a,  b>  <a,  b>  <cat-id(A)  a,  cat-id(B)  b>)  =  (cat-id(C)  (F  <a,  b>)))
Date html generated:
2020_05_20-AM-07_54_15
Last ObjectModification:
2019_12_30-PM-03_22_13
Theory : small!categories
Home
Index