Nuprl Lemma : functor-arrow-prod-id

[A,B,C:SmallCategory]. ∀[F:Functor(A × B;C)]. ∀[a:cat-ob(A)]. ∀[b:cat-ob(B)].
  ((F <a, b> <a, b> <cat-id(A) a, cat-id(B) b>(cat-id(C) (F <a, b>)) ∈ (cat-arrow(C) (F <a, b>(F <a, b>)))


Proof




Definitions occuring in Statement :  product-cat: A × B functor-arrow: arrow(F) functor-ob: ob(F) cat-functor: Functor(C1;C2) cat-id: cat-id(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] apply: a pair: <a, b> equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] cat-ob: cat-ob(C) pi1: fst(t) product-cat: A × B pi2: snd(t)
Lemmas referenced :  functor-arrow-id product-cat_wf cat-ob_wf cat-functor_wf small-category_wf id_prod_cat_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination sqequalRule independent_pairEquality universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType Error :memTop

Latex:
\mforall{}[A,B,C:SmallCategory].  \mforall{}[F:Functor(A  \mtimes{}  B;C)].  \mforall{}[a:cat-ob(A)].  \mforall{}[b:cat-ob(B)].
    ((F  <a,  b>  <a,  b>  <cat-id(A)  a,  cat-id(B)  b>)  =  (cat-id(C)  (F  <a,  b>)))



Date html generated: 2020_05_20-AM-07_54_15
Last ObjectModification: 2019_12_30-PM-03_22_13

Theory : small!categories


Home Index