Nuprl Lemma : nat-trans-equation

[C,D:SmallCategory]. ∀[F,G:Functor(C;D)]. ∀[T:nat-trans(C;D;F;G)]. ∀[A,B:cat-ob(C)]. ∀[g:cat-arrow(C) B].
  ((cat-comp(D) (F A) (G A) (G B) (T A) (G g))
  (cat-comp(D) (F A) (F B) (G B) (F g) (T B))
  ∈ (cat-arrow(D) (F A) (G B)))


Proof




Definitions occuring in Statement :  nat-trans: nat-trans(C;D;F;G) functor-arrow: arrow(F) functor-ob: ob(F) cat-functor: Functor(C1;C2) cat-comp: cat-comp(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] nat-trans: nat-trans(C;D;F;G) all: x:A. B[x] member: t ∈ T
Lemmas referenced :  cat-arrow_wf cat-ob_wf nat-trans_wf cat-functor_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution setElimination thin rename hypothesis dependent_functionElimination hypothesisEquality universeIsType applyEquality introduction extract_by_obid isectElimination because_Cache inhabitedIsType

Latex:
\mforall{}[C,D:SmallCategory].  \mforall{}[F,G:Functor(C;D)].  \mforall{}[T:nat-trans(C;D;F;G)].  \mforall{}[A,B:cat-ob(C)].
\mforall{}[g:cat-arrow(C)  A  B].
    ((cat-comp(D)  (F  A)  (G  A)  (G  B)  (T  A)  (G  A  B  g))
    =  (cat-comp(D)  (F  A)  (F  B)  (G  B)  (F  A  B  g)  (T  B)))



Date html generated: 2020_05_20-AM-07_51_18
Last ObjectModification: 2019_12_30-PM-02_11_00

Theory : small!categories


Home Index