Nuprl Lemma : callbyvalueall-reduce-repeat

[F,a:Top].  (let x ⟵ in let y ⟵ in F[y] let x ⟵ in F[x])


Proof




Definitions occuring in Statement :  callbyvalueall: callbyvalueall uall: [x:A]. B[x] top: Top so_apply: x[s] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T callbyvalueall: callbyvalueall so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a has-valueall: has-valueall(a) implies:  Q prop: has-value: (a)↓
Lemmas referenced :  evalall-sqequal top_wf has-valueall_wf_base cbv_sqequal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin lemma_by_obid sqequalHypSubstitution isectElimination baseApply closedConclusion baseClosed hypothesisEquality independent_isectElimination lambdaFormation hypothesis sqequalAxiom isect_memberEquality because_Cache callbyvalueReduce

Latex:
\mforall{}[F,a:Top].    (let  x  \mleftarrow{}{}  a  in  let  y  \mleftarrow{}{}  x  in  F[y]  \msim{}  let  x  \mleftarrow{}{}  a  in  F[x])



Date html generated: 2016_05_15-PM-02_08_39
Last ObjectModification: 2016_01_15-PM-10_21_50

Theory : untyped!computation


Home Index