Nuprl Lemma : callbyvalueall-reduce-repeat
∀[F,a:Top].  (let x ⟵ a in let y ⟵ x in F[y] ~ let x ⟵ a in F[x])
Proof
Definitions occuring in Statement : 
callbyvalueall: callbyvalueall, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
callbyvalueall: callbyvalueall, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
has-valueall: has-valueall(a)
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
has-value: (a)↓
Lemmas referenced : 
evalall-sqequal, 
top_wf, 
has-valueall_wf_base, 
cbv_sqequal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
independent_isectElimination, 
lambdaFormation, 
hypothesis, 
sqequalAxiom, 
isect_memberEquality, 
because_Cache, 
callbyvalueReduce
Latex:
\mforall{}[F,a:Top].    (let  x  \mleftarrow{}{}  a  in  let  y  \mleftarrow{}{}  x  in  F[y]  \msim{}  let  x  \mleftarrow{}{}  a  in  F[x])
Date html generated:
2016_05_15-PM-02_08_39
Last ObjectModification:
2016_01_15-PM-10_21_50
Theory : untyped!computation
Home
Index