Nuprl Lemma : not-has-value-bottom
¬(⊥)↓
Proof
Definitions occuring in Statement : 
bottom: ⊥, 
has-value: (a)↓, 
not: ¬A
Definitions unfolded in proof : 
has-value: (a)↓, 
all: ∀x:A. B[x], 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
top: Top, 
so_apply: x[s], 
not: ¬A, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
sq_type: SQType(T), 
guard: {T}, 
true: True, 
false: False, 
prop: ℙ
Lemmas referenced : 
sqle_wf_base, 
int_subtype_base, 
subtype_base_sq, 
strictness-callbyvalue, 
bottom-sqle, 
cbv_bottom_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
comment, 
lambdaFormation, 
sqequalSqle, 
isectElimination, 
natural_numberEquality, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
promote_hyp, 
baseClosed
Latex:
\mneg{}(\mbot{})\mdownarrow{}
Date html generated:
2016_05_15-PM-02_07_15
Last ObjectModification:
2016_01_15-PM-10_24_00
Theory : untyped!computation
Home
Index