Nuprl Lemma : partial_ap_is_gen

[g:Top]. ∀[m,n:ℕ].  (partial_ap(g;m;n) partial_ap_gen(g;m;0;n))


Proof




Definitions occuring in Statement :  partial_ap: partial_ap(g;n;m) partial_ap_gen: partial_ap_gen(g;n;s;m) nat: uall: [x:A]. B[x] top: Top natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T partial_ap_gen: partial_ap_gen(g;n;s;m) partial_ap: partial_ap(g;n;m) uimplies: supposing a nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: sq_type: SQType(T) guard: {T} mk_lambdas: mk_lambdas(F;m)
Lemmas referenced :  top_wf nat_wf primrec0_lemma int_formula_prop_wf int_term_value_constant_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermConstant_wf itermVar_wf itermSubtract_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int nat_properties int_subtype_base subtype_base_sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination because_Cache independent_isectElimination hypothesis hypothesisEquality setElimination rename dependent_functionElimination unionElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll equalityTransitivity equalitySymmetry independent_functionElimination sqequalAxiom

Latex:
\mforall{}[g:Top].  \mforall{}[m,n:\mBbbN{}].    (partial\_ap(g;m;n)  \msim{}  partial\_ap\_gen(g;m;0;n))



Date html generated: 2016_05_15-PM-02_12_06
Last ObjectModification: 2016_01_15-PM-10_20_15

Theory : untyped!computation


Home Index