Nuprl Lemma : int-ring-hom-p-adic-ring
∀[p:{2...}]. (λk.k(p) ∈ RingHom(ℤ-rng;ℤ(p)))
Proof
Definitions occuring in Statement : 
p-adic-ring: ℤ(p)
, 
p-int: k(p)
, 
int_ring: ℤ-rng
, 
ring_hom: RingHom(R;S)
, 
int_upper: {i...}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ring_hom: RingHom(R;S)
, 
nat_plus: ℕ+
, 
int_upper: {i...}
, 
le: A ≤ B
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
, 
int_ring: ℤ-rng
, 
rng_car: |r|
, 
pi1: fst(t)
, 
p-adics: p-adics(p)
, 
p-adic-ring: ℤ(p)
, 
guard: {T}
, 
integ_dom: IntegDom{i}
, 
crng: CRng
, 
rng: Rng
, 
cand: A c∧ B
, 
rng_plus: +r
, 
pi2: snd(t)
, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
infix_ap: x f y
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
subtract: n - m
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
lelt: i ≤ j < k
, 
so_apply: x[s]
, 
rng_times: *
, 
rng_one: 1
Lemmas referenced : 
p-int_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
less_than_wf, 
subtype_rel_self, 
rng_car_wf, 
p-adic-ring_wf, 
rng_subtype_rng_sig, 
crng_subtype_rng, 
subtype_rel_transitivity, 
crng_wf, 
rng_wf, 
rng_sig_wf, 
int_ring_wf, 
integ_dom_wf, 
p-adic-property, 
nat_plus_properties, 
int_upper_properties, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
le_wf, 
nat_plus_wf, 
p-add-int, 
all_wf, 
eqmod_wf, 
exp_wf2, 
nat_plus_subtype_nat, 
less-iff-le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
minus-one-mul-top, 
add-associates, 
add-zero, 
int_seg_wf, 
int_seg_properties, 
intformand_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
p-mul-int, 
fun_thru_2op_wf, 
rng_plus_wf, 
rng_times_wf, 
equal_wf, 
rng_one_wf, 
int_upper_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
productElimination, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_pairFormation, 
lambdaFormation, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
sqequalRule, 
applyEquality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
instantiate, 
because_Cache, 
addEquality, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
equalitySymmetry, 
minusEquality, 
equalityTransitivity, 
applyLambdaEquality, 
axiomEquality, 
multiplyEquality, 
productEquality
Latex:
\mforall{}[p:\{2...\}].  (\mlambda{}k.k(p)  \mmember{}  RingHom(\mBbbZ{}-rng;\mBbbZ{}(p)))
Date html generated:
2019_10_15-AM-10_35_12
Last ObjectModification:
2018_08_22-AM-09_39_22
Theory : rings_1
Home
Index