Nuprl Lemma : int-ring-hom-p-adic-ring

[p:{2...}]. k.k(p) ∈ RingHom(ℤ-rng;ℤ(p)))


Proof




Definitions occuring in Statement :  p-adic-ring: (p) p-int: k(p) int_ring: -rng ring_hom: RingHom(R;S) int_upper: {i...} uall: [x:A]. B[x] member: t ∈ T lambda: λx.A[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ring_hom: RingHom(R;S) nat_plus: + int_upper: {i...} le: A ≤ B and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True int_ring: -rng rng_car: |r| pi1: fst(t) p-adics: p-adics(p) p-adic-ring: (p) guard: {T} integ_dom: IntegDom{i} crng: CRng rng: Rng cand: c∧ B rng_plus: +r pi2: snd(t) fun_thru_2op: FunThru2op(A;B;opa;opb;f) infix_ap: y satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] so_lambda: λ2x.t[x] subtract: m int_seg: {i..j-} nat: lelt: i ≤ j < k so_apply: x[s] rng_times: * rng_one: 1
Lemmas referenced :  p-int_wf decidable__lt false_wf not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel less_than_wf subtype_rel_self rng_car_wf p-adic-ring_wf rng_subtype_rng_sig crng_subtype_rng subtype_rel_transitivity crng_wf rng_wf rng_sig_wf int_ring_wf integ_dom_wf p-adic-property nat_plus_properties int_upper_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf le_wf nat_plus_wf p-add-int all_wf eqmod_wf exp_wf2 nat_plus_subtype_nat less-iff-le condition-implies-le minus-add minus-one-mul minus-one-mul-top add-associates add-zero int_seg_wf int_seg_properties intformand_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_less_lemma p-mul-int fun_thru_2op_wf rng_plus_wf rng_times_wf equal_wf rng_one_wf int_upper_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis productElimination dependent_functionElimination natural_numberEquality unionElimination independent_pairFormation lambdaFormation voidElimination independent_functionElimination independent_isectElimination sqequalRule applyEquality isect_memberEquality voidEquality intEquality instantiate because_Cache addEquality approximateComputation dependent_pairFormation int_eqEquality equalitySymmetry minusEquality equalityTransitivity applyLambdaEquality axiomEquality multiplyEquality productEquality

Latex:
\mforall{}[p:\{2...\}].  (\mlambda{}k.k(p)  \mmember{}  RingHom(\mBbbZ{}-rng;\mBbbZ{}(p)))



Date html generated: 2019_10_15-AM-10_35_12
Last ObjectModification: 2018_08_22-AM-09_39_22

Theory : rings_1


Home Index