Nuprl Lemma : quot_by_prime_ideal
∀r:CRng. ∀p:Ideal(r){i}. ∀d:detach_fun(|r|;p).  ((∀u:|r|. SqStable(p u)) ⇒ (IsPrimeIdeal(r;p) ⇐⇒ IsIntegDom(r / d)))
Proof
Definitions occuring in Statement : 
prime_ideal_p: IsPrimeIdeal(R;P), 
quot_ring: r / d, 
ideal: Ideal(r){i}, 
integ_dom_p: IsIntegDom(r), 
crng: CRng, 
rng_car: |r|, 
detach_fun: detach_fun(T;A), 
sq_stable: SqStable(P), 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
apply: f a
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
crng: CRng, 
rng: Rng, 
so_lambda: λ2x.t[x], 
ideal: Ideal(r){i}, 
so_apply: x[s], 
integ_dom_p: IsIntegDom(r), 
nequal: a ≠ b ∈ T , 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
infix_ap: x f y, 
type_inj: [x]{T}, 
quot_ring: r / d, 
rng_one: 1, 
pi2: snd(t), 
pi1: fst(t), 
rng_zero: 0, 
rng_times: *, 
true: True, 
squash: ↓T, 
or: P ∨ Q, 
false: False, 
not: ¬A, 
cand: A c∧ B, 
decidable: Dec(P), 
prime_ideal_p: IsPrimeIdeal(R;P)
Lemmas referenced : 
all_wf, 
rng_car_wf, 
sq_stable_wf, 
detach_fun_wf, 
ideal_wf, 
crng_wf, 
not_functionality_wrt_iff, 
equal_wf, 
quot_ring_wf, 
rng_subtype_rng_sig, 
crng_subtype_rng, 
subtype_rel_transitivity, 
rng_wf, 
rng_sig_wf, 
type_inj_wf_for_qrng, 
rng_one_wf, 
rng_zero_wf, 
rng_plus_wf, 
rng_minus_wf, 
quot_ring_car_elim_b, 
rng_times_wf, 
not_wf, 
prime_ideal_p_wf, 
subtype_rel_self, 
all_rng_quot_elim_a, 
rev_implies_wf, 
sq_stable__all, 
sq_stable__equal, 
squash_wf, 
true_wf, 
rng_plus_zero, 
iff_weakening_equal, 
rng_plus_comm, 
rng_minus_zero, 
or_wf, 
dec_alt_char, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
because_Cache, 
productElimination, 
independent_pairFormation, 
independent_functionElimination, 
instantiate, 
independent_isectElimination, 
dependent_functionElimination, 
cumulativity, 
universeEquality, 
productEquality, 
functionEquality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
voidElimination, 
inlFormation, 
inrFormation, 
unionElimination, 
addLevel
Latex:
\mforall{}r:CRng.  \mforall{}p:Ideal(r)\{i\}.  \mforall{}d:detach\_fun(|r|;p).
    ((\mforall{}u:|r|.  SqStable(p  u))  {}\mRightarrow{}  (IsPrimeIdeal(r;p)  \mLeftarrow{}{}\mRightarrow{}  IsIntegDom(r  /  d)))
Date html generated:
2019_10_15-AM-10_33_56
Last ObjectModification:
2018_08_29-AM-10_10_15
Theory : rings_1
Home
Index