Nuprl Lemma : rng_times_sum_r

[r:Rng]. ∀[a,b:ℤ].
  ∀[E:{a..b-} ⟶ |r|]. ∀[u:|r|].  (((Σ(r) a ≤ j < b. E[j]) u) (r) a ≤ j < b. E[j] u) ∈ |r|) supposing a ≤ b


Proof




Definitions occuring in Statement :  rng_sum: rng_sum rng: Rng rng_times: * rng_car: |r| int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] infix_ap: y so_apply: x[s] le: A ≤ B function: x:A ⟶ B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a rng: Rng prop: all: x:A. B[x] so_lambda: λ2x.t[x] int_upper: {i...} so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q guard: {T} int_seg: {i..j-} infix_ap: y decidable: Dec(P) or: P ∨ Q squash: T true: True subtype_rel: A ⊆B satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top lelt: i ≤ j < k
Lemmas referenced :  rng_car_wf int_seg_wf le_wf rng_wf int_le_to_int_upper_uniform uall_wf equal_wf infix_ap_wf rng_times_wf rng_sum_wf int_upper_wf int_upper_ind_uniform decidable__equal_int squash_wf true_wf rng_sum_unroll_base iff_weakening_equal rng_times_zero rng_zero_wf rng_sum_unroll_hi int_upper_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf intformeq_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_le_lemma int_formula_prop_wf rng_plus_wf subtract_wf itermSubtract_wf itermConstant_wf int_term_value_subtract_lemma int_term_value_constant_lemma lelt_wf decidable__le rng_times_over_plus
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality hypothesis extract_by_obid setElimination rename functionEquality equalityTransitivity equalitySymmetry intEquality because_Cache dependent_functionElimination lambdaEquality applyEquality functionExtensionality productElimination independent_functionElimination instantiate lambdaFormation unionElimination imageElimination universeEquality independent_isectElimination natural_numberEquality imageMemberEquality baseClosed dependent_pairFormation int_eqEquality voidElimination voidEquality independent_pairFormation computeAll dependent_set_memberEquality

Latex:
\mforall{}[r:Rng].  \mforall{}[a,b:\mBbbZ{}].
    \mforall{}[E:\{a..b\msupminus{}\}  {}\mrightarrow{}  |r|].  \mforall{}[u:|r|].    (((\mSigma{}(r)  a  \mleq{}  j  <  b.  E[j])  *  u)  =  (\mSigma{}(r)  a  \mleq{}  j  <  b.  E[j]  *  u)) 
    supposing  a  \mleq{}  b



Date html generated: 2017_10_01-AM-08_19_30
Last ObjectModification: 2017_02_28-PM-02_04_10

Theory : rings_1


Home Index