Nuprl Lemma : setTC_wf
∀[a:Set{i:l}]. (setTC(a) ∈ Set{i:l})
Proof
Definitions occuring in Statement : 
setTC: setTC(a), 
Set: Set{i:l}, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
Set: Set{i:l}, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
implies: P ⇒ Q, 
pcw-pp-barred: Barred(pp), 
int_seg: {i..j-}, 
nat: ℕ, 
ge: i ≥ j , 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
cw-step: cw-step(A;a.B[a]), 
pcw-step: pcw-step, 
spreadn: spread3, 
less_than: a < b, 
less_than': less_than'(a;b), 
true: True, 
squash: ↓T, 
isr: isr(x), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
btrue: tt, 
ext-eq: A ≡ B, 
unit: Unit, 
it: ⋅, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
so_lambda: so_lambda3, 
so_apply: x[s1;s2;s3], 
ext-family: F ≡ G, 
pi1: fst(t), 
nat_plus: ℕ+, 
W-rel: W-rel(A;a.B[a];w), 
param-W-rel: param-W-rel, 
pcw-steprel: StepRel(s1;s2), 
pi2: snd(t), 
isl: isl(x), 
pcw-step-agree: StepAgree(s;p1;w), 
cand: A c∧ B, 
guard: {T}, 
Wsup: Wsup(a;b), 
sq_type: SQType(T), 
le: A ≤ B, 
sq_stable: SqStable(P), 
mk-set: f"(T), 
setTC: setTC(a), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
Set_wf, 
W-elimination-facts, 
istype-universe, 
subtype_rel_self, 
subtract_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
decidable__lt, 
istype-le, 
istype-less_than, 
istype-top, 
istype-void, 
istype-true, 
add-subtract-cancel, 
itermAdd_wf, 
int_term_value_add_lemma, 
W-ext, 
param-co-W-ext, 
unit_wf2, 
it_wf, 
param-co-W_wf, 
top_wf, 
pcw-steprel_wf, 
true_wf, 
false_wf, 
subtype_rel_dep_function, 
less_than_wf, 
subtype_base_sq, 
nat_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
subtype_rel_function, 
int_seg_wf, 
int_seg_subtype, 
istype-false, 
sq_stable__le, 
setmem_wf, 
set-subtype-coSet, 
mk-set_wf, 
setmem-mk-set-sq, 
set-add_wf2, 
setunionfun_wf2, 
setmem_functionality, 
seteq_weakening, 
seteq_inversion, 
plus-set_wf2, 
plus-set_wf, 
setmem-plus-set
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
universeIsType, 
introduction, 
extract_by_obid, 
thin, 
lambdaFormation_alt, 
hypothesisEquality, 
instantiate, 
dependent_functionElimination, 
universeEquality, 
sqequalRule, 
lambdaEquality_alt, 
cumulativity, 
isectElimination, 
productElimination, 
strong_bar_Induction, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
independent_functionElimination, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
natural_numberEquality, 
independent_pairFormation, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
voidElimination, 
productIsType, 
because_Cache, 
inhabitedIsType, 
lessCases, 
axiomSqEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
closedConclusion, 
axiomEquality, 
equalityIstype, 
addEquality, 
int_eqReduceTrueSq, 
promote_hyp, 
hypothesis_subsumption, 
equalityElimination, 
dependent_pairEquality_alt, 
inlEquality_alt, 
unionIsType, 
productEquality, 
unionEquality, 
hyp_replacement, 
applyLambdaEquality, 
intEquality, 
setIsType, 
inrFormation, 
dependent_set_memberEquality
Latex:
\mforall{}[a:Set\{i:l\}].  (setTC(a)  \mmember{}  Set\{i:l\})
Date html generated:
2020_05_20-PM-01_18_42
Last ObjectModification:
2020_01_06-PM-01_24_39
Theory : constructive!set!theory
Home
Index