Nuprl Lemma : constant-Kan-type_wf

[X:KanCubicalSet]. ∀[Gamma:CubicalSet].  (constant-Kan-type(X) ∈ {Gamma ⊢ _(Kan)})


Proof




Definitions occuring in Statement :  constant-Kan-type: constant-Kan-type(X) Kan-cubical-set: KanCubicalSet Kan-cubical-type: {X ⊢ _(Kan)} cubical-set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T Kan-cubical-set: KanCubicalSet Kan-cubical-type: {X ⊢ _(Kan)} constant-Kan-type: constant-Kan-type(X) and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] uimplies: supposing a top: Top nameset: nameset(L) I-cube: X(I) functor-ob: ob(F) pi1: fst(t) cubical-type-at: A(a) constant-cubical-type: (X) cubical-set: CubicalSet cand: c∧ B prop: Kan-filler: Kan-filler(X;filler) Kan-A-filler: Kan-A-filler(X;A;filler) fills-open_box: fills-open_box(X;I;bx;cube) fills-A-open-box: fills-A-open-box(X;A;I;alpha;bx;cube) fills-faces: fills-faces(X;I;bx;L) fills-A-faces: fills-A-faces(X;A;I;alpha;bx;L) is-A-face: is-A-face(X;A;I;alpha;bx;f) cubical-type-ap-morph: (u f) pi2: snd(t) is-face: is-face(X;I;bx;f) l_all: (∀x∈L.P[x]) open_box: open_box(X;I;J;x;i) int_seg: {i..j-} guard: {T} lelt: i ≤ j < k implies:  Q sq_stable: SqStable(P) squash: T coordinate_name: Cname int_upper: {i...} decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A less_than: a < b I-face: I-face(X;I) face-cube: cube(f) face-direction: direction(f) face-dimension: dimension(f) spreadn: spread3 uniform-Kan-A-filler: uniform-Kan-A-filler(X;A;filler) uniform-Kan-filler: uniform-Kan-filler(X;filler) open_box_image: open_box_image(X;I;K;f;bx) A-open-box-image: A-open-box-image(X;A;I;K;f;alpha;bx) face-image: face-image(X;I;K;f;face) A-face-image: A-face-image(X;A;I;K;f;alpha;face) name-morph: name-morph(I;J)
Lemmas referenced :  constant-cubical-type_wf list_wf coordinate_name_wf subtype_rel_dep_function nameset_wf int_seg_wf open_box_wf I-cube_wf A-open-box_wf cubical-type-at_wf subtype_rel-equal constant-A-open-box subtype_rel_list subtype_rel_self Kan-A-filler_wf uniform-Kan-A-filler_wf cubical-set_wf Kan-cubical-set_wf select_wf I-face_wf int_seg_properties length_wf sq_stable__l_member decidable__equal-coordinate_name sq_stable__le decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma equal_wf list-diff_wf cname_deq_wf cons_wf nil_wf cube-set-restriction_wf face-map_wf2 assert_wf isname_wf all_wf l_member_wf name-morph_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename productElimination dependent_set_memberEquality sqequalRule dependent_pairEquality extract_by_obid isectElimination hypothesisEquality hypothesis lambdaEquality applyEquality functionExtensionality functionEquality natural_numberEquality because_Cache dependent_functionElimination independent_isectElimination lambdaFormation isect_memberEquality voidElimination voidEquality spreadEquality independent_pairFormation productEquality axiomEquality equalityTransitivity equalitySymmetry independent_functionElimination imageMemberEquality baseClosed imageElimination unionElimination dependent_pairFormation int_eqEquality intEquality computeAll

Latex:
\mforall{}[X:KanCubicalSet].  \mforall{}[Gamma:CubicalSet].    (constant-Kan-type(X)  \mmember{}  \{Gamma  \mvdash{}  \_(Kan)\})



Date html generated: 2017_10_05-AM-10_26_26
Last ObjectModification: 2017_07_28-AM-11_22_53

Theory : cubical!sets


Home Index