Nuprl Lemma : case-cube_wf
∀[Gamma:j⊢]. ∀[phi,psi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma, phi ⊢ _}]. ∀[B:{Gamma, psi ⊢ _}]. ∀[I:fset(ℕ)].
∀[rho:Gamma, (phi ∨ psi)(I)].
  (case-cube(phi;A;B;I;rho) ∈ Type)
Proof
Definitions occuring in Statement : 
case-cube: case-cube(phi;A;B;I;rho)
, 
context-subset: Gamma, phi
, 
face-or: (a ∨ b)
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
context-subset: Gamma, phi
, 
all: ∀x:A. B[x]
, 
face-or: (a ∨ b)
, 
cubical-term-at: u(a)
, 
subtype_rel: A ⊆r B
, 
cubical-type-at: A(a)
, 
pi1: fst(t)
, 
face-type: 𝔽
, 
constant-cubical-type: (X)
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
face-presheaf: 𝔽
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
case-cube: case-cube(phi;A;B;I;rho)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
or: P ∨ Q
Lemmas referenced : 
I_cube_pair_redex_lemma, 
face_lattice-1-join-irreducible, 
cubical-term-at_wf, 
face-type_wf, 
subtype_rel_self, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
I_cube_wf, 
context-subset_wf, 
face-or_wf, 
fset_wf, 
nat_wf, 
cubical-type_wf, 
cubical-term_wf, 
cubical_set_wf, 
fl-eq_wf, 
lattice-1_wf, 
uiff_transitivity, 
equal-wf-T-base, 
bool_wf, 
assert_wf, 
eqtt_to_assert, 
assert-fl-eq, 
cubical-type-at_wf, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
istype-assert, 
istype-void
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
Error :memTop, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
hypothesisEquality, 
isectElimination, 
applyEquality, 
instantiate, 
lambdaEquality_alt, 
productEquality, 
cumulativity, 
isectEquality, 
because_Cache, 
universeIsType, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
baseClosed, 
dependent_set_memberEquality_alt, 
equalityIstype, 
independent_pairFormation, 
functionIsType, 
voidElimination
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi,psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma,  phi  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma,  psi  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].
\mforall{}[rho:Gamma,  (phi  \mvee{}  psi)(I)].
    (case-cube(phi;A;B;I;rho)  \mmember{}  Type)
Date html generated:
2020_05_20-PM-03_07_26
Last ObjectModification:
2020_04_06-PM-00_51_27
Theory : cubical!type!theory
Home
Index