Nuprl Lemma : case-cube_wf

[Gamma:j⊢]. ∀[phi,psi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma, phi ⊢ _}]. ∀[B:{Gamma, psi ⊢ _}]. ∀[I:fset(ℕ)].
[rho:Gamma, (phi ∨ psi)(I)].
  (case-cube(phi;A;B;I;rho) ∈ Type)


Proof




Definitions occuring in Statement :  case-cube: case-cube(phi;A;B;I;rho) context-subset: Gamma, phi face-or: (a ∨ b) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T context-subset: Gamma, phi all: x:A. B[x] face-or: (a ∨ b) cubical-term-at: u(a) subtype_rel: A ⊆B cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a iff: ⇐⇒ Q implies:  Q case-cube: case-cube(phi;A;B;I;rho) bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) not: ¬A rev_implies:  Q false: False or: P ∨ Q
Lemmas referenced :  I_cube_pair_redex_lemma face_lattice-1-join-irreducible cubical-term-at_wf face-type_wf subtype_rel_self lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf I_cube_wf context-subset_wf face-or_wf fset_wf nat_wf cubical-type_wf cubical-term_wf cubical_set_wf fl-eq_wf lattice-1_wf uiff_transitivity equal-wf-T-base bool_wf assert_wf eqtt_to_assert assert-fl-eq cubical-type-at_wf iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot istype-assert istype-void
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution extract_by_obid dependent_functionElimination thin Error :memTop,  hypothesis setElimination rename sqequalRule hypothesisEquality isectElimination applyEquality instantiate lambdaEquality_alt productEquality cumulativity isectEquality because_Cache universeIsType independent_isectElimination productElimination independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt isectIsTypeImplies inhabitedIsType lambdaFormation_alt unionElimination equalityElimination baseClosed dependent_set_memberEquality_alt equalityIstype independent_pairFormation functionIsType voidElimination

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi,psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma,  phi  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma,  psi  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].
\mforall{}[rho:Gamma,  (phi  \mvee{}  psi)(I)].
    (case-cube(phi;A;B;I;rho)  \mmember{}  Type)



Date html generated: 2020_05_20-PM-03_07_26
Last ObjectModification: 2020_04_06-PM-00_51_27

Theory : cubical!type!theory


Home Index