Nuprl Lemma : ctt-level-comp-cumulativity

[X:⊢''']. ∀[a:ℕ4]. ∀[T:{X ⊢_}]. ∀[b:ℕ4].  Comp(X;a;T) ⊆Comp(X;b;T) supposing a ≤ b


Proof




Definitions occuring in Statement :  ctt-level-comp: Comp(X;lvl;T) ctt-level-type: {X ⊢lvl _} cubical_set: CubicalSet int_seg: {i..j-} uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] le: A ≤ B natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B sq_stable: SqStable(P) implies:  Q all: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) guard: {T} ctt-level-type: {X ⊢lvl _} eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt ctt-level-comp: Comp(X;lvl;T) bfalse: ff composition-structure: Gamma ⊢ Compositon(A) composition-function: composition-function{j:l,i:l}(Gamma;A) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) false: False less_than': less_than'(a;b) true: True not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: squash: T nat: less_than: a < b
Lemmas referenced :  sq_stable__subtype_rel ctt-level-comp_wf ctt-level-type-cumulativity2 decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties composition-structure-subset sub_cubical_set_self istype-le int_seg_subtype_special int_seg_cases subtype_rel_self composition-structure_wf cubical-type-cumulativity cubical-type-cumulativity2 full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf ctt-level-type_wf decidable__le intformnot_wf int_formula_prop_not_lemma int_seg_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis applyEquality independent_isectElimination sqequalRule independent_functionElimination dependent_functionElimination because_Cache setElimination rename productElimination unionElimination cumulativity intEquality equalityTransitivity equalitySymmetry natural_numberEquality lambdaFormation_alt hypothesis_subsumption voidElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation universeIsType imageMemberEquality baseClosed imageElimination dependent_set_memberEquality_alt

Latex:
\mforall{}[X:\mvdash{}'''].  \mforall{}[a:\mBbbN{}4].  \mforall{}[T:\{X  \mvdash{}a  \_\}].  \mforall{}[b:\mBbbN{}4].    Comp(X;a;T)  \msubseteq{}r  Comp(X;b;T)  supposing  a  \mleq{}  b



Date html generated: 2020_05_20-PM-07_47_15
Last ObjectModification: 2020_05_11-PM-01_27_01

Theory : cubical!type!theory


Home Index