Nuprl Lemma : ctt-level-comp-cumulativity
∀[X:⊢''']. ∀[a:ℕ4]. ∀[T:{X ⊢a _}]. ∀[b:ℕ4].  Comp(X;a;T) ⊆r Comp(X;b;T) supposing a ≤ b
Proof
Definitions occuring in Statement : 
ctt-level-comp: Comp(X;lvl;T), 
ctt-level-type: {X ⊢lvl _}, 
cubical_set: CubicalSet, 
int_seg: {i..j-}, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
decidable: Dec(P), 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
ctt-level-type: {X ⊢lvl _}, 
eq_int: (i =z j), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
ctt-level-comp: Comp(X;lvl;T), 
bfalse: ff, 
composition-structure: Gamma ⊢ Compositon(A), 
composition-function: composition-function{j:l,i:l}(Gamma;A), 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp), 
false: False, 
less_than': less_than'(a;b), 
true: True, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
prop: ℙ, 
squash: ↓T, 
nat: ℕ, 
less_than: a < b
Lemmas referenced : 
sq_stable__subtype_rel, 
ctt-level-comp_wf, 
ctt-level-type-cumulativity2, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
int_seg_properties, 
composition-structure-subset, 
sub_cubical_set_self, 
istype-le, 
int_seg_subtype_special, 
int_seg_cases, 
subtype_rel_self, 
composition-structure_wf, 
cubical-type-cumulativity, 
cubical-type-cumulativity2, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
ctt-level-type_wf, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
int_seg_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
independent_isectElimination, 
sqequalRule, 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache, 
setElimination, 
rename, 
productElimination, 
unionElimination, 
cumulativity, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
lambdaFormation_alt, 
hypothesis_subsumption, 
voidElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
universeIsType, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberEquality_alt
Latex:
\mforall{}[X:\mvdash{}'''].  \mforall{}[a:\mBbbN{}4].  \mforall{}[T:\{X  \mvdash{}a  \_\}].  \mforall{}[b:\mBbbN{}4].    Comp(X;a;T)  \msubseteq{}r  Comp(X;b;T)  supposing  a  \mleq{}  b
Date html generated:
2020_05_20-PM-07_47_15
Last ObjectModification:
2020_05_11-PM-01_27_01
Theory : cubical!type!theory
Home
Index