Nuprl Lemma : cubical-sigma_wf-level-type
∀[K:⊢''']. ∀[a,b:ℕ4]. ∀[A:{K ⊢a _}]. ∀[B:{K.A ⊢b _}].  (Σ A B ∈ K ⊢levelsup(a;b) )
Proof
Definitions occuring in Statement : 
levelsup: levelsup(x;y), 
ctt-level-type: {X ⊢lvl _}, 
cubical-sigma: Σ A B, 
cube-context-adjoin: X.A, 
cubical_set: CubicalSet, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
sq_type: SQType(T), 
implies: P ⇒ Q, 
guard: {T}, 
ctt-level-type: {X ⊢lvl _}, 
eq_int: (i =z j), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
levelsup: levelsup(x;y), 
imax: imax(a;b), 
le_int: i ≤z j, 
lt_int: i <z j, 
bnot: ¬bb, 
bfalse: ff, 
subtype_rel: A ⊆r B, 
false: False, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
prop: ℙ, 
nat: ℕ, 
less_than: a < b, 
squash: ↓T
Lemmas referenced : 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
int_seg_properties, 
cubical-sigma_wf, 
int_seg_subtype_special, 
int_seg_cases, 
cubical-type-cumulativity, 
cubical-type-cumulativity2, 
cube-context-adjoin_wf, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
ctt-level-type_wf, 
cube-context-adjoin_wf-level-type, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
istype-le, 
int_seg_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
productElimination, 
unionElimination, 
instantiate, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
hypothesisEquality, 
sqequalRule, 
hypothesis_subsumption, 
applyEquality, 
voidElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
universeIsType, 
dependent_set_memberEquality_alt, 
imageElimination
Latex:
\mforall{}[K:\mvdash{}'''].  \mforall{}[a,b:\mBbbN{}4].  \mforall{}[A:\{K  \mvdash{}a  \_\}].  \mforall{}[B:\{K.A  \mvdash{}b  \_\}].    (\mSigma{}  A  B  \mmember{}  K  \mvdash{}levelsup(a;b)  )
Date html generated:
2020_05_20-PM-07_49_06
Last ObjectModification:
2020_05_07-AM-11_19_16
Theory : cubical!type!theory
Home
Index