Nuprl Lemma : equal-composition-op2

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[c1,c2:Gamma ⊢ CompOp(A)].
  c1 c2 ∈ Gamma ⊢ CompOp(A) 
  supposing ∀I:fset(ℕ). ∀i:{i:ℕ| ¬i ∈ I} . ∀rho:Gamma(I+i). ∀phi:𝔽(I). ∀u:{I+i,s(phi) ⊢ _:(A)<rho> iota}.
            ∀a0:cubical-path-0(Gamma;A;I;i;rho;phi;u).
              ((c1 rho phi a0) (c2 rho phi a0) ∈ A((i1)(rho)))


Proof




Definitions occuring in Statement :  composition-op: Gamma ⊢ CompOp(A) cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type-at: A(a) cubical-type: {X ⊢ _} subset-iota: iota cubical-subset: I,psi face-presheaf: 𝔽 csm-comp: F context-map: <rho> formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-1: (i1) nc-s: s add-name: I+i fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A set: {x:A| B[x]}  apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T composition-op: Gamma ⊢ CompOp(A) uimplies: supposing a cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u) squash: T prop: subtype_rel: A ⊆B all: x:A. B[x] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] guard: {T}
Lemmas referenced :  equal-composition-op cubical-path-condition'_wf cubical-path-0_wf cubical-type-cumulativity2 cubical-term_wf cubical-subset_wf add-name_wf cube-set-restriction_wf face-presheaf_wf2 nc-s_wf f-subset-add-name csm-ap-type_wf cubical_set_cumulativity-i-j cubical-type-cumulativity csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf I_cube_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le nat_wf not_wf fset-member_wf int-deq_wf fset_wf istype-nat strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self istype-void istype-cubical-type-at nc-1_wf composition-op_wf cubical-type_wf cubical_set_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename independent_isectElimination functionExtensionality applyEquality applyLambdaEquality sqequalRule imageMemberEquality baseClosed imageElimination dependent_set_memberEquality_alt universeIsType instantiate because_Cache dependent_functionElimination natural_numberEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination setEquality functionIsType setIsType intEquality equalityIstype inhabitedIsType equalityTransitivity equalitySymmetry

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[c1,c2:Gamma  \mvdash{}  CompOp(A)].
    c1  =  c2 
    supposing  \mforall{}I:fset(\mBbbN{}).  \mforall{}i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  .  \mforall{}rho:Gamma(I+i).  \mforall{}phi:\mBbbF{}(I).
                        \mforall{}u:\{I+i,s(phi)  \mvdash{}  \_:(A)<rho>  o  iota\}.  \mforall{}a0:cubical-path-0(Gamma;A;I;i;rho;phi;u).
                            ((c1  I  i  rho  phi  u  a0)  =  (c2  I  i  rho  phi  u  a0))



Date html generated: 2020_05_20-PM-03_49_56
Last ObjectModification: 2020_04_09-PM-01_48_15

Theory : cubical!type!theory


Home Index