Nuprl Lemma : equal-glue-cube

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}].
  ∀phi:{Gamma ⊢ _:𝔽}
    ∀[T:{Gamma, phi ⊢ _}]. ∀[w:{Gamma, phi ⊢ _:(T ⟶ A)}].
      ∀I:fset(ℕ). ∀rho:Gamma(I). ∀u,v:glue-cube(Gamma;A;phi;T;w;I;rho).
        v ∈ glue-cube(Gamma;A;phi;T;w;I;rho) 
        supposing if (phi(rho)==1)
        then v ∈ T(rho)
        else v ∈ (J:fset(ℕ) ⟶ f:{f:J ⟶ I| phi(f(rho)) 1 ∈ Point(face_lattice(J))}  ⟶ T(f(rho)) × A(rho))
        fi 


Proof




Definitions occuring in Statement :  glue-cube: glue-cube(Gamma;A;phi;T;w;I;rho) context-subset: Gamma, phi face-type: 𝔽 cubical-fun: (A ⟶ B) cubical-term-at: u(a) cubical-term: {X ⊢ _:A} cubical-type-at: A(a) cubical-type: {X ⊢ _} fl-eq: (x==y) face_lattice: face_lattice(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet names-hom: I ⟶ J fset: fset(T) nat: ifthenelse: if then else fi  uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] product: x:A × B[x] equal: t ∈ T lattice-1: 1 lattice-point: Point(l)
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] glue-cube: glue-cube(Gamma;A;phi;T;w;I;rho) member: t ∈ T subtype_rel: A ⊆B cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt implies:  Q bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A rev_implies:  Q iff: ⇐⇒ Q true: True context-subset: Gamma, phi
Lemmas referenced :  fl-eq_wf cubical-term-at_wf face-type_wf subtype_rel_self lattice-point_wf face_lattice_wf lattice-1_wf eqtt_to_assert assert-fl-eq subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf glue-cube_wf I_cube_wf fset_wf nat_wf istype-cubical-term context-subset_wf cubical-fun_wf thin-context-subset cubical-type_wf cubical_set_wf iff_imp_equal_bool btrue_wf iff_functionality_wrt_iff true_wf iff_weakening_equal istype-true names-hom_wf cube-set-restriction_wf istype-cubical-type-at I_cube_pair_redex_lemma glue-equations_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule because_Cache inhabitedIsType unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination instantiate lambdaEquality_alt productEquality cumulativity isectEquality universeIsType setElimination rename dependent_pairFormation_alt equalityIstype promote_hyp dependent_functionElimination independent_functionElimination voidElimination independent_pairFormation natural_numberEquality productIsType functionIsType setIsType Error :memTop,  dependent_set_memberEquality_alt

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].
    \mforall{}phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}
        \mforall{}[T:\{Gamma,  phi  \mvdash{}  \_\}].  \mforall{}[w:\{Gamma,  phi  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].
            \mforall{}I:fset(\mBbbN{}).  \mforall{}rho:Gamma(I).  \mforall{}u,v:glue-cube(Gamma;A;phi;T;w;I;rho).
                u  =  v  supposing  if  (phi(rho)==1)  then  u  =  v  else  u  =  v  fi 



Date html generated: 2020_05_20-PM-05_39_07
Last ObjectModification: 2020_04_21-PM-05_17_32

Theory : cubical!type!theory


Home Index