Nuprl Lemma : extend-face-term-morph
∀[I:fset(ℕ)]. ∀[phi:Point(face_lattice(I))]. ∀[u:{I,phi ⊢ _:𝔽}]. ∀[J:fset(ℕ)]. ∀[f:J ⟶ I].
  ((extend-face-term(I;phi;u))<f> = extend-face-term(J;(phi)<f>(u)subset-trans(I;J;f;phi)) ∈ Point(face_lattice(J)))
Proof
Definitions occuring in Statement : 
extend-face-term: extend-face-term(I;phi;u), 
face-type: 𝔽, 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}, 
subset-trans: subset-trans(I;J;f;x), 
cubical-subset: I,psi, 
fl-morph: <f>, 
face_lattice: face_lattice(I), 
names-hom: I ⟶ J, 
lattice-point: Point(l), 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
apply: f a, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
bounded-lattice-hom: Hom(l1;l2), 
lattice-hom: Hom(l1;l2), 
bdd-distributive-lattice: BoundedDistributiveLattice, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
I_cube: A(I), 
functor-ob: ob(F), 
pi1: fst(t), 
face-presheaf: 𝔽, 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
top: Top, 
uimplies: b supposing a, 
cand: A c∧ B, 
cubical-type-at: A(a), 
csm-ap-type: (AF)s, 
face-type: 𝔽, 
constant-cubical-type: (X), 
true: True, 
squash: ↓T, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
cubical-subset: I,psi, 
names-cat: NamesCat, 
rep-sub-sheaf: rep-sub-sheaf(C;X;P), 
all: ∀x:A. B[x], 
cube-set-restriction: f(s), 
pi2: snd(t), 
fl-morph: <f>, 
fl-lift: fl-lift(T;eq;L;eqL;f0;f1), 
face-lattice-property, 
free-dist-lattice-with-constraints-property, 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac), 
lattice-extend: lattice-extend(L;eq;eqL;f;ac), 
lattice-fset-join: \/(s), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
fset-image: f"(s), 
f-union: f-union(domeq;rngeq;s;x.g[x]), 
list_accum: list_accum, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
cubical-term-at: u(a), 
subset-trans: subset-trans(I;J;f;x), 
csm-ap-term: (t)s, 
csm-ap: (s)x
Lemmas referenced : 
extend-face-term-unique, 
fl-morph_wf, 
bounded-lattice-hom_wf, 
face_lattice_wf, 
bdd-distributive-lattice_wf, 
csm-ap-term_wf, 
cubical-subset_wf, 
subtype_rel_self, 
fset_wf, 
names_wf, 
assert_wf, 
fset-antichain_wf, 
union-deq_wf, 
names-deq_wf, 
fset-all_wf, 
fset-contains-none_wf, 
face-lattice-constraints_wf, 
face-type_wf, 
subset-trans_wf, 
csm-face-type, 
extend-face-term_wf, 
set_wf, 
names-hom_wf, 
name-morph-satisfies_wf, 
nat_wf, 
cubical-term_wf, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
lattice-hom-le, 
bdd-distributive-lattice-subtype-bdd-lattice, 
extend-face-term-le, 
cubical-term-at_wf, 
csm-ap-type_wf, 
squash_wf, 
true_wf, 
fl-morph-comp2, 
iff_weakening_equal, 
I_cube_pair_redex_lemma, 
cat_arrow_triple_lemma, 
extend-face-term-property, 
nh-comp_wf, 
name-morph-satisfies-comp, 
face-lattice-property, 
free-dist-lattice-with-constraints-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
because_Cache, 
setEquality, 
unionEquality, 
productEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
independent_pairFormation, 
instantiate, 
cumulativity, 
universeEquality, 
natural_numberEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
dependent_set_memberEquality, 
hyp_replacement
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[phi:Point(face\_lattice(I))].  \mforall{}[u:\{I,phi  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].
    ((extend-face-term(I;phi;u))<f>  =  extend-face-term(J;(phi)<f>(u)subset-trans(I;J;f;phi)))
Date html generated:
2017_10_05-AM-07_34_06
Last ObjectModification:
2017_03_03-AM-00_58_10
Theory : cubical!type!theory
Home
Index