Nuprl Lemma : extend-face-term-morph

[I:fset(ℕ)]. ∀[phi:Point(face_lattice(I))]. ∀[u:{I,phi ⊢ _:𝔽}]. ∀[J:fset(ℕ)]. ∀[f:J ⟶ I].
  ((extend-face-term(I;phi;u))<f> extend-face-term(J;(phi)<f>;(u)subset-trans(I;J;f;phi)) ∈ Point(face_lattice(J)))


Proof




Definitions occuring in Statement :  extend-face-term: extend-face-term(I;phi;u) face-type: 𝔽 csm-ap-term: (t)s cubical-term: {X ⊢ _:A} subset-trans: subset-trans(I;J;f;x) cubical-subset: I,psi fl-morph: <f> face_lattice: face_lattice(I) names-hom: I ⟶ J lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) bdd-distributive-lattice: BoundedDistributiveLattice lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt I_cube: A(I) functor-ob: ob(F) pi1: fst(t) face-presheaf: 𝔽 and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] top: Top uimplies: supposing a cand: c∧ B cubical-type-at: A(a) csm-ap-type: (AF)s face-type: 𝔽 constant-cubical-type: (X) true: True squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q cubical-subset: I,psi names-cat: NamesCat rep-sub-sheaf: rep-sub-sheaf(C;X;P) all: x:A. B[x] cube-set-restriction: f(s) pi2: snd(t) fl-morph: <f> fl-lift: fl-lift(T;eq;L;eqL;f0;f1) face-lattice-property free-dist-lattice-with-constraints-property lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) cubical-term-at: u(a) subset-trans: subset-trans(I;J;f;x) csm-ap-term: (t)s csm-ap: (s)x
Lemmas referenced :  extend-face-term-unique fl-morph_wf bounded-lattice-hom_wf face_lattice_wf bdd-distributive-lattice_wf csm-ap-term_wf cubical-subset_wf subtype_rel_self fset_wf names_wf assert_wf fset-antichain_wf union-deq_wf names-deq_wf fset-all_wf fset-contains-none_wf face-lattice-constraints_wf face-type_wf subset-trans_wf csm-face-type extend-face-term_wf set_wf names-hom_wf name-morph-satisfies_wf nat_wf cubical-term_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf lattice-hom-le bdd-distributive-lattice-subtype-bdd-lattice extend-face-term-le cubical-term-at_wf csm-ap-type_wf squash_wf true_wf fl-morph-comp2 iff_weakening_equal I_cube_pair_redex_lemma cat_arrow_triple_lemma extend-face-term-property nh-comp_wf name-morph-satisfies-comp face-lattice-property free-dist-lattice-with-constraints-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis lambdaEquality setElimination rename sqequalRule because_Cache setEquality unionEquality productEquality isect_memberEquality voidElimination voidEquality equalityTransitivity equalitySymmetry independent_isectElimination independent_pairFormation instantiate cumulativity universeEquality natural_numberEquality imageElimination imageMemberEquality baseClosed productElimination independent_functionElimination dependent_functionElimination dependent_set_memberEquality hyp_replacement

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[phi:Point(face\_lattice(I))].  \mforall{}[u:\{I,phi  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].
    ((extend-face-term(I;phi;u))<f>  =  extend-face-term(J;(phi)<f>(u)subset-trans(I;J;f;phi)))



Date html generated: 2017_10_05-AM-07_34_06
Last ObjectModification: 2017_03_03-AM-00_58_10

Theory : cubical!type!theory


Home Index