Nuprl Lemma : nc-e'-p

[I,J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[z:Point(dM(I))]. ∀[i:ℕ]. ∀[j:{j:ℕ| ¬j ∈ J} ].
  ((i/z) ⋅ f,i=j ⋅ (j/dM-lift(J;I;f) z) ∈ J ⟶ I+i)


Proof




Definitions occuring in Statement :  nc-e': g,i=j nc-p: (i/z) add-name: I+i nh-comp: g ⋅ f dM-lift: dM-lift(I;J;f) names-hom: I ⟶ J dM: dM(I) lattice-point: Point(l) fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a nat: so_apply: x[s] DeMorgan-algebra: DeMorganAlgebra and: P ∧ Q guard: {T} top: Top names-hom: I ⟶ J compose: g nc-p: (i/z) nc-e': g,i=j names: names(I) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  squash: T true: True iff: ⇐⇒ Q rev_implies:  Q bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False dma-hom: dma-hom(dma1;dma2) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) nequal: a ≠ b ∈  ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A
Lemmas referenced :  set_wf nat_wf not_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf names-hom_wf names_wf add-name_wf nh-comp-sq eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int dM-lift_wf dM-lift-inc nc-p_wf trivial-member-add-name1 iff_weakening_equal eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int not-added-name dma-hom_wf all_wf dM_inc_wf nat_properties satisfiable-full-omega-tt intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf dM-lift-is-id f-subset-add-name f-subset_wf int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality applyEquality intEquality independent_isectElimination because_Cache natural_numberEquality hypothesisEquality isect_memberEquality axiomEquality instantiate productEquality cumulativity universeEquality voidElimination voidEquality functionExtensionality setElimination rename lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination imageElimination dependent_functionElimination dependent_set_memberEquality imageMemberEquality baseClosed independent_functionElimination dependent_pairFormation promote_hyp setEquality int_eqEquality computeAll

Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[z:Point(dM(I))].  \mforall{}[i:\mBbbN{}].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  J\}  ].
    ((i/z)  \mcdot{}  f  =  f,i=j  \mcdot{}  (j/dM-lift(J;I;f)  z))



Date html generated: 2017_10_05-AM-01_06_48
Last ObjectModification: 2017_07_28-AM-09_28_03

Theory : cubical!type!theory


Home Index