Nuprl Lemma : path-term_wf

X:j⊢. ∀psi:{X ⊢ _:𝔽}.
  ∀[r:{X ⊢ _:𝕀}]
    ∀T:{X ⊢ _}. ∀a,b:{X ⊢ _:T}. ∀w:{X, psi ⊢ _:(Path_T b)}.
      (path-term(psi;w;a;b;r) ∈ {X, (psi ∨ ((r=0) ∨ (r=1))) ⊢ _:T})


Proof




Definitions occuring in Statement :  path-term: path-term(phi;w;a;b;r) path-type: (Path_A b) context-subset: Gamma, phi face-zero: (i=0) face-one: (i=1) face-or: (a ∨ b) face-type: 𝔽 interval-type: 𝕀 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} top: Top uimplies: supposing a and: P ∧ Q true: True squash: T prop: guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q path-term: path-term(phi;w;a;b;r) same-cubical-term: X ⊢ u=v:A context-subset: Gamma, phi interval-1: 1(𝕀) cubical-term-at: u(a) interval-0: 0(𝕀) respects-equality: respects-equality(S;T)
Lemmas referenced :  thin-context-subset path-type_wf cubical-term_wf context-subset_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-type_wf interval-type_wf face-type_wf cubical_set_wf context-subset-term-subtype face-zero_wf istype-void context-subset-term-0 subset-cubical-term face-0_wf face-one_wf context-subset-is-subset sub_cubical_set_transitivity face-and_wf context-iterated-subset sub_cubical_set_self sub_cubical_set_wf squash_wf true_wf face-one-and-zero iff_weakening_equal subset-cubical-type context-iterated-subset0 context-subset-swap sub_cubical_set_functionality2 case-term_wf2 face-or_wf cubical-path-app_wf subset-cubical-term2 path-type-subset cubical-path-app-1 equal_wf I_cube_pair_redex_lemma face-one-eq-1 I_cube_wf fset_wf nat_wf cubical-term-equal context-iterated-subset2 cubical-path-app-0 face-zero-eq-1 case-term-same2 respects-equality-context-subset-term
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate applyEquality sqequalRule because_Cache dependent_set_memberEquality_alt isect_memberEquality_alt voidElimination independent_isectElimination independent_pairFormation productElimination natural_numberEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry inhabitedIsType imageMemberEquality baseClosed independent_functionElimination equalityIstype dependent_functionElimination Error :memTop,  hyp_replacement applyLambdaEquality functionExtensionality setElimination rename

Latex:
\mforall{}X:j\mvdash{}.  \mforall{}psi:\{X  \mvdash{}  \_:\mBbbF{}\}.
    \mforall{}[r:\{X  \mvdash{}  \_:\mBbbI{}\}]
        \mforall{}T:\{X  \mvdash{}  \_\}.  \mforall{}a,b:\{X  \mvdash{}  \_:T\}.  \mforall{}w:\{X,  psi  \mvdash{}  \_:(Path\_T  a  b)\}.
            (path-term(psi;w;a;b;r)  \mmember{}  \{X,  (psi  \mvee{}  ((r=0)  \mvee{}  (r=1)))  \mvdash{}  \_:T\})



Date html generated: 2020_05_20-PM-05_09_16
Last ObjectModification: 2020_04_10-AM-11_42_38

Theory : cubical!type!theory


Home Index