Nuprl Lemma : geo-intersect-iff
∀e:EuclideanPlane. ∀P,L:LINE.
  (P \/ L ⇐⇒ ∃a,b,c,d,v:Point. (a-v-b ∧ c-v-d ∧ a I P ∧ b I P ∧ c I L ∧ d I L ∧ a leftof cd ∧ b leftof dc))
Proof
Definitions occuring in Statement : 
geo-intersect: L \/ M, 
geo-incident: p I L, 
geoline: LINE, 
euclidean-plane: EuclideanPlane, 
geo-strict-between: a-b-c, 
geo-left: a leftof bc, 
geo-point: Point, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
geo-intersect: L \/ M, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
geo-line: Line, 
pi2: snd(t), 
pi1: fst(t), 
euclidean-plane: EuclideanPlane, 
sq_stable: SqStable(P), 
cand: A c∧ B, 
squash: ↓T, 
geo-incident: p I L, 
true: True, 
or: P ∨ Q, 
basic-geometry: BasicGeometry, 
geo-midpoint: a=m=b, 
oriented-plane: OrientedPlane, 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
top: Top, 
so_apply: x[s1;s2;s3], 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
geo-lsep: a # bc, 
geo-strict-between: a-b-c, 
basic-geometry-: BasicGeometry-, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
respects-equality: respects-equality(S;T)
Lemmas referenced : 
geo-intersect_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-strict-between_wf, 
geo-incident_wf, 
geo-left_wf, 
geoline_wf, 
exists_wf, 
and_wf, 
geoline-subtype1, 
geo-SS_wf, 
sq_stable__and, 
geo-colinear_wf, 
geo-between_wf, 
sq_stable__colinear, 
sq_stable__geo-between, 
geo-sep_wf, 
trivial-equal, 
geo-sep-or, 
symmetric-point-construction, 
geo-sep-sym, 
colinear-lsep-cycle, 
lsep-all-sym2, 
geo-between-sep, 
oriented-colinear-append, 
cons_wf, 
nil_wf, 
cons_member, 
l_member_wf, 
geo-colinear-is-colinear-set, 
geo-between-implies-colinear, 
list_ind_cons_lemma, 
istype-void, 
list_ind_nil_lemma, 
length_of_cons_lemma, 
length_of_nil_lemma, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-le, 
istype-less_than, 
lsep-all-sym, 
geo-colinear-same, 
geo-congruent-symmetry, 
geo-congruent-sep, 
left-implies-sep, 
left-between, 
not-lsep-iff-colinear, 
geo-between-symmetry, 
iff_weakening_uiff, 
pi1_wf_top, 
pi2_wf, 
subtype_rel_product, 
top_wf, 
geo-incident-line, 
geo-strict-between-implies-colinear, 
lsep-colinear-sep, 
geo-lsep_wf, 
geo-strict-between-sep1, 
geo-line-eq-geoline, 
subtype-respects-equality, 
geo-line_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
productIsType, 
applyEquality, 
instantiate, 
independent_isectElimination, 
because_Cache, 
inhabitedIsType, 
productElimination, 
promote_hyp, 
equalitySymmetry, 
rename, 
hyp_replacement, 
applyLambdaEquality, 
lambdaEquality_alt, 
setElimination, 
dependent_set_memberEquality_alt, 
equalityIstype, 
equalityTransitivity, 
dependent_functionElimination, 
independent_functionElimination, 
isect_memberEquality_alt, 
productEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_pairEquality_alt, 
independent_pairEquality, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation_alt, 
inlFormation_alt, 
inrFormation_alt, 
voidElimination, 
approximateComputation, 
functionIsType, 
setIsType
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}P,L:LINE.
    (P  \mbackslash{}/  L
    \mLeftarrow{}{}\mRightarrow{}  \mexists{}a,b,c,d,v:Point.  (a-v-b  \mwedge{}  c-v-d  \mwedge{}  a  I  P  \mwedge{}  b  I  P  \mwedge{}  c  I  L  \mwedge{}  d  I  L  \mwedge{}  a  leftof  cd  \mwedge{}  b  leftof  dc))
Date html generated:
2019_10_16-PM-02_40_37
Last ObjectModification:
2018_12_11-PM-11_05_21
Theory : euclidean!plane!geometry
Home
Index