Nuprl Lemma : boundary-polyhedron-subtype

[k:ℕ]. ∀[n:ℕ+]. ∀[K:n-dim-complex].  (|∂(K)| ⊆|K|)


Proof




Definitions occuring in Statement :  rat-cube-complex-polyhedron: |K| nat_plus: + nat: subtype_rel: A ⊆B uall: [x:A]. B[x] rat-complex-boundary: (K) rational-cube-complex: n-dim-complex
Definitions unfolded in proof :  rev_implies:  Q guard: {T} true: True cand: c∧ B l_member: (x ∈ l) iff: ⇐⇒ Q so_apply: x[s] squash: T less_than: a < b le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} so_lambda: λ2x.t[x] rational-cube-complex: n-dim-complex prop: and: P ∧ Q top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) all: x:A. B[x] ge: i ≥  nat_plus: + nat: stable-union: Error :stable-union,  rat-cube-complex-polyhedron: |K| subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  iff_weakening_equal subtype_rel_self real-vec_wf true_wf squash_wf in-rat-cube-face istype-less_than member-rat-complex-boundary select_member istype-nat nat_plus_wf rational-cube-complex_wf int_term_value_subtract_lemma itermSubtract_wf subtract_wf rat-cube-complex-polyhedron_wf not_wf decidable__lt int_seg_properties select_wf in-rat-cube_wf rational-cube_wf length_wf int_seg_wf exists_wf istype-le int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int intformless_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties nat_plus_properties rat-complex-boundary_wf double-negation-hyp-elim
Rules used in proof :  universeEquality instantiate baseClosed imageMemberEquality applyEquality isectIsTypeImplies axiomEquality productIsType functionIsType equalitySymmetry equalityTransitivity equalityIstype imageElimination closedConclusion productElimination lambdaFormation_alt inhabitedIsType universeIsType independent_pairFormation sqequalRule voidElimination isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt independent_functionElimination approximateComputation independent_isectElimination unionElimination natural_numberEquality dependent_functionElimination hypothesis because_Cache isectElimination extract_by_obid hypothesisEquality dependent_set_memberEquality_alt rename thin setElimination sqequalHypSubstitution lambdaEquality_alt cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[K:n-dim-complex].    (|\mpartial{}(K)|  \msubseteq{}r  |K|)



Date html generated: 2019_10_30-AM-10_13_25
Last ObjectModification: 2019_10_27-AM-00_21_11

Theory : real!vectors


Home Index