Nuprl Lemma : rat-complex-subdiv-polyhedron

[k,n:ℕ]. ∀[K:n-dim-complex].  |(K)'| ≡ |K|


Proof




Definitions occuring in Statement :  rat-cube-complex-polyhedron: |K| nat: ext-eq: A ≡ B uall: [x:A]. B[x] rat-complex-subdiv: (K)' rational-cube-complex: n-dim-complex
Definitions unfolded in proof :  cand: c∧ B rev_implies:  Q false: False not: ¬A exists: x:A. B[x] iff: ⇐⇒ Q all: x:A. B[x] implies:  Q so_apply: x[s] prop: so_lambda: λ2x.t[x] rational-cube-complex: n-dim-complex rat-cube-complex-polyhedron: |K| subtype_rel: A ⊆B and: P ∧ Q ext-eq: A ≡ B member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  is-half-cube_wf istype-assert in-some-half-cube in-rat-half-cube member-rat-complex-subdiv2 istype-nat rational-cube-complex_wf rat-cube-complex-polyhedron_wf istype-void l_exists_iff not_wf l_member_wf in-rat-cube_wf rat-complex-subdiv_wf rational-cube_wf l_exists_wf double-negation-hyp-elim
Rules used in proof :  equalitySymmetry equalityTransitivity voidElimination productIsType dependent_pairFormation_alt inhabitedIsType isectIsTypeImplies isect_memberEquality_alt axiomEquality independent_pairEquality functionIsType productElimination dependent_functionElimination lambdaFormation_alt independent_functionElimination universeIsType setIsType sqequalRule because_Cache applyEquality hypothesis isectElimination extract_by_obid hypothesisEquality dependent_set_memberEquality_alt rename thin setElimination sqequalHypSubstitution lambdaEquality_alt independent_pairFormation cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[K:n-dim-complex].    |(K)'|  \mequiv{}  |K|



Date html generated: 2019_11_04-PM-04_43_43
Last ObjectModification: 2019_10_31-AM-11_05_26

Theory : real!vectors


Home Index