Nuprl Lemma : rat-complex-subdiv-polyhedron
∀[k,n:ℕ]. ∀[K:n-dim-complex].  |(K)'| ≡ |K|
Proof
Definitions occuring in Statement : 
rat-cube-complex-polyhedron: |K|
, 
nat: ℕ
, 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
, 
rat-complex-subdiv: (K)'
, 
rational-cube-complex: n-dim-complex
Definitions unfolded in proof : 
cand: A c∧ B
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
not: ¬A
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
rational-cube-complex: n-dim-complex
, 
rat-cube-complex-polyhedron: |K|
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
ext-eq: A ≡ B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
is-half-cube_wf, 
istype-assert, 
in-some-half-cube, 
in-rat-half-cube, 
member-rat-complex-subdiv2, 
istype-nat, 
rational-cube-complex_wf, 
rat-cube-complex-polyhedron_wf, 
istype-void, 
l_exists_iff, 
not_wf, 
l_member_wf, 
in-rat-cube_wf, 
rat-complex-subdiv_wf, 
rational-cube_wf, 
l_exists_wf, 
double-negation-hyp-elim
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
voidElimination, 
productIsType, 
dependent_pairFormation_alt, 
inhabitedIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
axiomEquality, 
independent_pairEquality, 
functionIsType, 
productElimination, 
dependent_functionElimination, 
lambdaFormation_alt, 
independent_functionElimination, 
universeIsType, 
setIsType, 
sqequalRule, 
because_Cache, 
applyEquality, 
hypothesis, 
isectElimination, 
extract_by_obid, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
lambdaEquality_alt, 
independent_pairFormation, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[K:n-dim-complex].    |(K)'|  \mequiv{}  |K|
Date html generated:
2019_11_04-PM-04_43_43
Last ObjectModification:
2019_10_31-AM-11_05_26
Theory : real!vectors
Home
Index