Nuprl Lemma : in-rat-half-cube
∀k:ℕ. ∀c,h:ℚCube(k).  ((↑is-half-cube(k;h;c)) ⇒ (∀x:ℝ^k. (in-rat-cube(k;x;h) ⇒ in-rat-cube(k;x;c))))
Proof
Definitions occuring in Statement : 
in-rat-cube: in-rat-cube(k;p;c), 
real-vec: ℝ^n, 
nat: ℕ, 
assert: ↑b, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
is-half-cube: is-half-cube(k;h;c), 
rational-cube: ℚCube(k)
Definitions unfolded in proof : 
rge: x ≥ y, 
rev_uimplies: rev_uimplies(P;Q), 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
ifthenelse: if b then t else f fi , 
band: p ∧b q, 
bfalse: ff, 
guard: {T}, 
sq_type: SQType(T), 
or: P ∨ Q, 
cand: A c∧ B, 
prop: ℙ, 
nat: ℕ, 
pi2: snd(t), 
pi1: fst(t), 
is-half-interval: is-half-interval(I;J), 
rational-interval: ℚInterval, 
rational-cube: ℚCube(k), 
real-vec: ℝ^n, 
in-rat-cube: in-rat-cube(k;p;c), 
uimplies: b supposing a, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
rleq_weakening_equal, 
rleq_functionality_wrt_implies, 
qle-qavg-iff-1, 
qavg-qle-iff-1, 
rleq-rat2real, 
rleq_transitivity, 
assert_of_band, 
assert_of_bor, 
iff_weakening_uiff, 
iff_transitivity, 
rationals_wf, 
equal_wf, 
bfalse_wf, 
assert-qeq, 
btrue_wf, 
band_wf, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases, 
qeq_wf2, 
bor_wf, 
assert_wf, 
qavg_wf, 
rleq_wf, 
rat2real_wf, 
istype-nat, 
rational-cube_wf, 
is-half-cube_wf, 
istype-assert, 
real-vec_wf, 
in-rat-cube_wf, 
int_seg_wf, 
assert-is-half-cube
Rules used in proof : 
inrFormation_alt, 
inlFormation_alt, 
isect_memberEquality_alt, 
productEquality, 
because_Cache, 
unionEquality, 
cumulativity, 
instantiate, 
unionIsType, 
promote_hyp, 
applyLambdaEquality, 
productIsType, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
hyp_replacement, 
unionElimination, 
rename, 
setElimination, 
natural_numberEquality, 
universeIsType, 
independent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityIstype, 
sqequalRule, 
inhabitedIsType, 
applyEquality, 
dependent_functionElimination, 
independent_isectElimination, 
productElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c,h:\mBbbQ{}Cube(k).
    ((\muparrow{}is-half-cube(k;h;c))  {}\mRightarrow{}  (\mforall{}x:\mBbbR{}\^{}k.  (in-rat-cube(k;x;h)  {}\mRightarrow{}  in-rat-cube(k;x;c))))
Date html generated:
2019_11_04-PM-04_43_03
Last ObjectModification:
2019_10_31-AM-10_26_12
Theory : real!vectors
Home
Index